Fate of mammalian cochlear hair cells and stereocilia after loss of the stereocilia.

نویسندگان

  • Shuping Jia
  • Shiming Yang
  • Weiwei Guo
  • David Z Z He
چکیده

Cochlear hair cells transduce mechanical stimuli into electrical activity. The site of hair cell transduction is the hair bundle, an array of stereocilia with different height arranged in a staircase. Tip links connect the apex of each stereocilium to the side of its taller neighbor. The hair bundle and tip links of hair cells are susceptible to acoustic trauma and ototoxic drugs. It has been shown that hair cells in lower vertebrates and in the mammalian vestibular system may survive bundle loss and undergo self-repair of the stereocilia. Our goals were to determine whether cochlear hair cells could survive the trauma and whether the tip link and/or the hair bundle could be regenerated. We simulated the acoustic trauma-induced tip link damage or stereociliary loss by disrupting tip links or ablating the hair bundles in the cultured organ of Corti from neonatal gerbils. Hair-cell fate and stereociliary morphology and function were examined using confocal and scanning electron microscopies and electrophysiology. Most bundleless hair cells survived and developed for approximately 2 weeks. However, no spontaneous hair-bundle regeneration was observed. When tip links were ruptured, repair of tip links and restoration of mechanotransduction were observed in <24 h. Our study suggests that the dynamic nature of the hair cell's transduction apparatus is retained despite the fact that regeneration of the hair bundle is lost in mammalian cochlear hair cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regeneration of Stereocilia of Hair Cells by Forced Atoh1 Expression in the Adult Mammalian Cochlea

The hallmark of mechanosensory hair cells is the stereocilia, where mechanical stimuli are converted into electrical signals. These delicate stereocilia are susceptible to acoustic trauma and ototoxic drugs. While hair cells in lower vertebrates and the mammalian vestibular system can spontaneously regenerate lost stereocilia, mammalian cochlear hair cells no longer retain this capability. We e...

متن کامل

Acid-sensing ion channel-1b in the stereocilia of mammalian cochlear hair cells.

We investigated whether amiloride-blockable proton-gated cation channels ASIC1a (acid-sensing ion channel-1a) and ASIC1b are expressed in the stereocilia of mouse cochlear hair cells. In-situ hybridization studies showed that ASIC1b transcripts, but not ASIC1a transcripts, were expressed in the inner and outer hair cells. Fluorescent immunohistochemical and immunogold electron microscopic analy...

متن کامل

3-D analysis of F-actin in stereocilia of cochlear hair cells after loud noise exposure.

Fluorescence microscopy can be a useful tool in the early detection of pathological changes in the stereocilia of outer hair cells which have undergone acoustic overstimulation. Fluorescent phalloidin, a highly specific F-actin stain, can be used to label F-actin in stereocilia. In this study, phalloidin label is used to determine quantitative changes of F-actin in the stereocilia of guinea pig...

متن کامل

Psychological and Physiological Acoustics Session 4aPPa: Biomechanics of Hearing 4aPPa6. Weak lateral coupling between stereocilia of mammalian cochlear hair cells requires new stimulus methods to study the biomechanics of hearing

The forces felt by different transduction channels in a bundle depend critically on how well stereocilia remain cohesive during deflection. In the bullfrog saccule, sliding adhesion mediated by horizontal top connectors (HTC) confers coherent motion to hair cell stereocilia and parallel gating to all transduction channels. In cochlear inner and outer hair cells (IHCs and OHCs), the mature compl...

متن کامل

Shaky hearing

Functional sensory hair cells in the inner ear have specialised microvilli — stereocilia — which are essential for hearing. The scanning electron micrograph at top shows the normal arrangement of stereocilia bundles on three outer hair cells in the inner ear of a three-day-old mouse. The stereocilia grow to form rows of graded height in a distinctive V-shaped bundle. Recent studies in mice have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 48  شماره 

صفحات  -

تاریخ انتشار 2009