Fuzzy C-Means Clustering-Based Speaker Verification
نویسندگان
چکیده
In speaker verification, a claimed speaker’s score is computed to accept or reject the speaker claim. Most of the current normalisation methods compute the score as the ratio of the claimed speaker’s and the impostors’ likelihood functions. Based on analysing false acceptance error occured by the current methods, we propose a fuzzy c-means clusteringbased normalisation method to find a better score which can reduce that error. Experiments performed on the TI46 and the ANDOSL speech corpora show better results for the proposed method.
منابع مشابه
Bilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملA Fuzzy Approach to Speaker Verification
This paper proposes a fuzzy approach to speaker verification. For an input utterance and a claimed identity, most of the current methods compute a claimed speaker’s score, which is the ratio of the claimed speaker’s and the impostors’ likelihood functions, and compare this score with a given threshold to accept or reject this speaker. Considering the speaker verification problem based on fuzzy ...
متن کاملA proposed decision rule for speaker recognition based on fuzzy c-means clustering
In vector quantisation (VQ) based speaker recognition, the minimum overall average distortion rule is used as a criterion to assign a given sequence of acoustic vectors to a speaker model known as a codebook. An alternative decision rule based on fuzzy c-means clustering is proposed in this paper. A set of membership functions associated with vectors for codebooks are defined as discriminant fu...
متن کاملFuzzy normalisation methods for speaker verification
This paper proposes normalisation methods based on fuzzy set theory for speaker veri cation. A claimed speaker's score used to accept or reject this speaker is viewed as a fuzzy membership function. We propose two scores: the fuzzy entropy and fuzzy C-means membership functions. Moreover, a likelihood transformation is considered to obtain a general approach and, based on this, ve more fuzzy sc...
متن کاملFuzzy Normalisation Methods for Pattern Verification
A fuzzy approach to normalization methods for pattern verification is presented in this paper. For an input object and a claimed identity, a claimed pattern's score is calculated and compared with a given threshold to accept or reject the claimed pattern. Considering the pattern verification problem based on fuzzy set theory, the claimed pattern's score is viewed as a fuzzy membership function....
متن کامل