The effects of acute doxorubicin treatment on proteome lysine acetylation status and apical caspases in skeletal muscle of fasted animals
نویسندگان
چکیده
BACKGROUND Doxorubicin treatment is known to cause muscular weakness. However, the cellular mechanisms have not been elucidated. We aimed to determine the effects of acute doxorubicin treatment on proteome lysine acetylation status, an indication of the apoptotic and inflammatory environment, and the expression and activation of various apical caspases involved in the initiation of apoptosis. METHODS Six-week-old male F344 rats were injected intraperitoneally with 20 mg/kg of doxorubicin or saline. Once the treatment was administered, both groups of animals were fasted with no food or water until sacrifice 24 h posttreatment. RESULTS Doxorubicin treatment affected neither the proteome lysine acetylation status nor the expression of sirtuin 1, sirtuin 3, SOD1, or SOD2 in soleus of fasted animals. Doxorubicin treatment also did not affect the expression or activation of procaspase-1, procaspase-8, procaspase-9, or procaspase-12. CONCLUSION We suggest that doxorubicin does not exert a direct effect on these catabolic parameters in skeletal muscle in vivo.
منابع مشابه
Injury to skeletal muscle of mice following acute and sub-acute pregabalin exposure
Objective(s): Pregabalin (PGB) is a new antiepileptic drug that has received FDA approval for patient who suffers from central neuropathic pain, partial seizures, generalized anxiety disorder, fibromyalgia and sleep disorders. This study was undertaken to evaluate the possible adverse effects of PGB on the muscular system of mice. Materials and Methods: To evaluate the effect of PGB on skeletal...
متن کاملIdentification of the Acetylation and Ubiquitin-Modified Proteome during the Progression of Skeletal Muscle Atrophy
Skeletal muscle atrophy is a consequence of several physiological and pathophysiological conditions including muscle disuse, aging and diseases such as cancer and heart failure. In each of these conditions, the predominant mechanism contributing to the loss of skeletal muscle mass is increased protein turnover. Two important mechanisms which regulate protein stability and degradation are lysine...
متن کاملPGC‐1α and fasting‐induced PDH regulation in mouse skeletal muscle
The purpose of the present study was to examine whether lack of skeletal muscle peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) affects the switch in substrate utilization from a fed to fasted state and the fasting-induced pyruvate dehydrogenase (PDH) regulation in skeletal muscle. Skeletal muscle-specific PGC-1α knockout (MKO) mice and floxed littermate controls w...
متن کاملQuantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells
Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine an...
متن کاملPeripheral Effects of FAAH Deficiency on Fuel and Energy Homeostasis: Role of Dysregulated Lysine Acetylation
BACKGROUND FAAH (fatty acid amide hydrolase), primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA). Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy ...
متن کامل