Rapid Determination of Sucrose in Fruit Juices: A New Sensitive Carbon Nanotube Paste Osmium-Polymer Mediated Biosensor

نویسندگان

  • Riccarda Antiochia
  • Lo Gorton
  • Luisa Mannina
چکیده

The aim of the present work was the development of a novel amperometric biosensor for rapid detection of sucrose in fruit juices samples. Two enzymes, invertase and fructose dehydrogenase (FDH), were immobilized onto a single-walled carbon nanotube paste (SWCNTP) electrode by wiring with a highly original osmium-polymer hydrogel. A second biosensor, for fructose only, was constructed containing inactive invertase and used for signal subtraction. The biosensor exhibits a detection limit for sucrose of 2 M, linearity up to 5 mM, good sensitivity of 1.98 A cm mM, good reproducibility (RSD = 2.5%), fast response time (8s) and a stability of 4 months if kept under wet conditions at 4 °C. The biosensor was successively tested for specific detection of sucrose and fructose in several commercial fruit juice samples and the results were compared with those obtained with a commercial spectrophotometric enzymatic kit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmium-Polymer Modified Carbon Nanotube Paste Electrode for Detection of Sucrose and Fructose

The aim of the work was the modification of a carbon nanotube paste electrode with a highly original osmium-polymer hydrogel for the development of a new amperometric biosensor for detection of sucrose and fructose. The biosensor for sucrose is based on the activity of the enzymes invertase and fructose dehydrogenase (FDH) immobilized into a carbon nanotube paste (CNTP) electrode properly modif...

متن کامل

A Sensitive Novel Approach towards the Detection of 8-Hydroxyquinoline at Anionic Surfactant Modified Carbon Nanotube Based Biosensor: A Voltammetric Study

A rapid electrochemical technique was developed to determine 8-Hydroxyquinoline (8HQ). In the current study, the anionic surfactant Sodium lauryl sulfate (SLS) was immobilized on the multi-walled carbon nanotube (MWCNT) paste surface for the fabrication of electrode to detect 8HQ in phosphate buffer solution (PBS) of pH 7.0. The response of SLS modified carbon nanotube paste electrode (SLSMCNTP...

متن کامل

Fabrication of an Electrochemical Sensor Based on a New Nano-ion Imprinted Polymer for Highly Selective and Sensitive Determination of Molybdate

In this work a new chemically modified carbon paste electrode was constructed for accurate, simple, sensitive and selective determination of molybdenum (VI) ions. The results of modified electrode by an ion imprinted polymer were compared with those obtained with carbon paste electrode. The results showed the stripping peak currents had a dramatic increase at the modified electrode. Under the o...

متن کامل

Study and optimization of the necessary conditions for the sensitive determination of the lead ion by a modified carbon paste electrode in environmental water samples

Rapid and facile preparation of the cheap modified electrode materials is an important parameter in development of the efficient electrochemical sensor for industrial scale production and mass-market usage. In the present work, the carbon paste electrode modified with multi-walled carbon nanotubes (MWCNTs) was prepared for sensitive determination of lead (Pb) ion in the presence of bismuth (Bi)...

متن کامل

Study and optimization of the necessary conditions for the sensitive determination of the lead ion by a modified carbon paste electrode in environmental water samples

Rapid and facile preparation of the cheap modified electrode materials is an important parameter in development of the efficient electrochemical sensor for industrial scale production and mass-market usage. In the present work, the carbon paste electrode modified with multi-walled carbon nanotubes (MWCNTs) was prepared for sensitive determination of lead (Pb) ion in the presence of bismuth (Bi)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014