Face detection and tracking using a Boosted Adaptive Particle Filter

نویسندگان

  • Wenlong Zheng
  • Suchendra M. Bhandarkar
چکیده

A novel algorithm, termed a Boosted Adaptive Particle Filter (BAPF), for integrated face detection and face tracking is proposed. The proposed algorithm is based on the synthesis of an adaptive particle filtering algorithm and the AdaBoost face detection algorithm. An Adaptive Particle Filter (APF), based on a new sampling technique, is proposed. The APF is shown to yield more accurate estimates of the proposal distribution and the posterior distribution than the standard Particle Filter thus enabling more accurate tracking in video sequences. In the proposed BAPF algorithm, the AdaBoost algorithm is used to detect faces in input image frames, whereas the APF algorithm is designed to track faces in video sequences. The proposed BAPF algorithm is employed for face detection, face verification, and face tracking in video sequences. Experimental results show that the proposed BAPF algorithm provides a means for robust face detection and accurate face tracking under various tracking scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter

The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...

متن کامل

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

Applying mean shift and motion detection approaches to hand tracking in sign language

Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...

متن کامل

Probabilistic Face Tracking Using Boosted Multi-view Detector

Face tracking in realistic environments is a difficult problem due to pose variations, occlusions of objects, illumination changes and cluttered background, among others. The paper presents a robust and real-time face tracking algorithm. A novel likelihood is developed based on a boosted multi-view face detector to characterize the structure information. The likelihood function is further integ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Visual Communication and Image Representation

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2009