Effects of Soil Oxygen Conditions and Soil pH on Remediation of DDT-contaminated Soil by Laccase from White Rot Fungi
نویسندگان
چکیده
High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between the concentration of oxygen in soil and the degradation of DDT by laccase. The residue of DDTs in soil under the atmosphere of oxygen decreased by 28.1% compared with the atmosphere of nitrogen at the end of the incubation with laccase. A similar pattern was observed in the remediation of DDT-contaminated soil by laccase under different flooding conditions, the higher the concentrations of oxygen in soil, the lower the residues of four DDT components and DDTs in soils. The residue of DDTs in the nonflooding soil declined by 16.7% compared to the flooded soil at the end of the incubation. The residues of DDTs in soils treated with laccase were lower in the pH range 2.5-4.5.
منابع مشابه
Biological Removal of Dibenzothiophene from Soil and Changes to soil Sulfate by White-Rot Fungus Phanerochaete chrysosporium
This study investigated biodegradation of dibenzothiophene (DBT) in marsh soil spiked bywhite-rot fungus Phanerochaete chrysosporium. Soil samples were spiked with 100 ppm DBTand incubated at 30°C in a dark chamber for 30 days. Samples were evaluated for pH, Mnperoxidaseactivity, sulfate ion concentration and growth during the tests. Results showedmaximum levels of pH, Mn-peroxidase and sulfate...
متن کاملIn Situ Depletion of Pentachlorophenol from Contaminated
The ability of two white rot fungi to deplete pentachlorophenol (PCP) from soil, which was contaminated with a commercial wood preservative, was examined in a field study. Inoculation of soil containing 250 to 400 μg of PCP g-1 with either Phanerochaete chrysosporium or P. sordida resulted in an overall decrease of 88 to 91% of PCP in the soil in 6.5 weeks. This decrease was achieved under subo...
متن کاملFungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal by New Zealand trametes species in contaminated field soils.
This study was conducted to improve the ability of indigenous New Zealand white-rot fungi to remove pentachlorophenol (PCP) from contaminated field soil. The effects of different bioaugmentation conditions on PCP removal and extracellular enzyme expression were measured in the laboratory. The conditions were fungal growth substrate and co-substrate composition, culture age, and Tween 80 additio...
متن کاملFungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal in highly contaminated field soils.
This study was conducted to improve the pentachlorophenol (PCP) bioremediation ability of white-rot fungi in highly contaminated field soils by manipulating bioaugmentation variables. These were the dry weight percentage of fungal inoculum addition (31-175 g kg(-1)), PCP concentration (100-2137 mg kg(-1) PCP), fungal inoculum formulation, and time (1-7 wk). Five fungal isolates were used: the N...
متن کاملInfluence of a soil enzyme on iron-cyanide complex speciation and mineral adsorption.
Cyanide is commonly found as ferrocyanide [Fe(II)(CN)(6)](-4) and in the more mobile form, ferricyanide [Fe(III)(CN)(6)](-3) in contaminated soils and sediments. Although soil minerals may influence ferrocyanide speciation, and thus mobility, the possible influence of soil enzymes has not been examined. In a series of experiments conducted under a range of soil-like conditions, laccase, a pheno...
متن کامل