Throughput of Wireless-Powered Massive Distributed Antenna Systems Over Composite Fading Channels

نویسندگان

  • Qing Wang
  • Hailiang Xiong
  • Shanshan Yu
  • Yuxi Liu
چکیده

—Massive Distributed Antenna System (DAS) with energy harvesting can promisingly satisfy the ever-growing wireless transmission requirements while providing sustainable power supply to the User Equipment (UE). In this paper, we propose a massive DAS with multiple-circle layout, where a large number of Remote Antenna Units (RAUs) are evenly distributed across these circles. Based on the instantaneous channel quality, a RAU is selected for the downlink wireless energy transfer to the UE. Using the harvested energy, the UE transmits information to all the RAUs according to the “harvestthen-transmit” protocol over the uplink. The closed-form asymptotic throughput for an arbitrary UE is derived over composite fading channels, which include the shadowing, fading, and path-loss effects. Subsequently, we analyze the average throughput when the UEs are uniformly distributed in the cell. Performance results are provided to validate our theoretical analysis and reveal the impacts of time allocation, UE locations, and RAU deployment on the system throughput.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Massive MIMO: Fundamentals and System Designs

The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there i...

متن کامل

Throughput of Arq Protocols over Rician, Nakagami and Mimo Block Fading Channels†

Block fading is a popular channel model that approximates the behavior of different wireless communication systems. Automatic-repeat request (ARQ) protocols are used to provide reliable communication in wireless networks. In this paper the throughput of the basic selective-repeat (SR) ARQ in block fading environments is derived. Single-antenna ARQ systems employing both coherent BPSK and QPSK a...

متن کامل

Probabilistic analysis of system outage in distributed antenna systems with composite channels

Distributed antenna systems (DAS) play a key role in future wireless communications. Despite the increasing previous research work, the channel models of DAS lack generality. This paper presents a holistic and generic channel model, which incorporates path loss, lognormal shadowing, and generalized-gamma fast fading into consideration. This overarching composite channel model encompasses well-k...

متن کامل

A Blind Hammerstein Diversity Combining Technique for Flat Fading Channels

Diversity combining techniques play an important role in combating the destructive effects of channel fading in wireless communication systems. In this work we present a blind diversity combining technique for Rayleigh flat fading channels based on Hammerstein type filters. We show that the performance of this technique is very close to ideal MRC system which is accepted as an optimum receiver ...

متن کامل

Energy Detection of Unknown Signals over Composite multipath/shadowing Fading Channels

In this paper, the performance analysis of an energy detector is exploited over composite multipath/shadowing fading channels, which is modeled by Rayleigh-lognormal (RL) distribution. Based on an approximate channel model which was recently proposed by the author, the RL envelope probability density function (pdf) is approximated by a finite sum of weighted Rayleigh pdfs. Relying on this inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCM

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017