Norm descent conjugate gradient methods for solving symmetric nonlinear equations

نویسندگان

  • Yunhai Xiao
  • Chunjie Wu
  • Soon-Yi Wu
چکیده

Nonlinear conjugate gradient method is very popular in solving large-scale unconstrained minimization problems due to its simple iterative form and lower storage requirement. In the recent years, it was successfully extended to solve higher-dimension monotone nonlinear equations. Nevertheless, the research activities on conjugate gradient method in symmetric equations are just beginning. This study aims to developing, analyzing, and validating a family of nonlinear conjugate gradient methods for symmetric equations. The proposed algorithms are based on the latest, and state-of-the-art descent conjugate gradient methods for unconstrained minimization. The series of proposed methods are derivative-free, where the Jacobian information is needless at the full iteration process. We prove that the proposed methods converge globally under some appropriate conditions. Numerical results with differentiable parameter’s values and performance comparisons with another solver CGD to demonstrate the superiority and effectiveness of the proposed algorithms are reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations

In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...

متن کامل

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

A Note on the Descent Property Theorem for the Hybrid Conjugate Gradient Algorithm CCOMB Proposed by Andrei

In [1] (Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization J. Optimization. Theory Appl. 141 (2009) 249 - 264), an efficient hybrid conjugate gradient algorithm, the CCOMB algorithm is proposed for solving unconstrained optimization problems. However, the proof of Theorem 2.1 in [1] is incorrect due to an erroneous inequality which used to indicate the descent property for the s...

متن کامل

Residual norm steepest descent based iterative algorithms for Sylvester tensor equations

Consider the following consistent Sylvester tensor equation[mathscr{X}times_1 A +mathscr{X}times_2 B+mathscr{X}times_3 C=mathscr{D},]where the matrices $A,B, C$ and the tensor $mathscr{D}$ are given and $mathscr{X}$ is the unknown tensor. The current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...

متن کامل

An Iterative Method Using an Optimal Descent Vector, for Solving an Ill-Conditioned System Bx = b, Better and Faster than the Conjugate Gradient Method

To solve an ill-conditioned system of linear algebraic equations (LAEs): Bx−b = 0, we define an invariant-manifold in terms of r := Bx−b, and a monotonically increasing function Q(t) of a time-like variable t. Using this, we derive an evolution equation for dx/dt, which is a system of Nonlinear Ordinary Differential Equations (NODEs) for x in terms of t. Using the concept of discrete dynamics e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2015