Plasmon-enhanced nanoporous BiVO4 photoanodes for efficient photoelectrochemical water oxidation.

نویسندگان

  • Jiayong Gan
  • Bharath Bangalore Rajeeva
  • Zilong Wu
  • Daniel Penley
  • Chaolun Liang
  • Yexiang Tong
  • Yuebing Zheng
چکیده

Conversion of solar irradiation into chemical fuels such as hydrogen with the use of a photoelectrochemical (PEC) cell is an attractive strategy for green energy. The promising technique of incorporating metal nanoparticles (NPs) in the photoelectrodes is being explored to enhance the performance of the photoelectrodes. In this work, we developed Au-NPs-functionalized nanoporous BiVO4 photoanodes, and utilized the plasmonic effects of Au NPs to enhance the photoresponse. The plasmonic enhancement leads to an AM 1.5 photocurrent of 5.1 ± 0.1 mA cm(-2) at 1.23 V versus a reverse hydrogen electrode. We observed an enhancement of five times with respect to pristine BiVO4 in the photocurrent with long-term stability and high energy-conversion efficiency. The overall performance enhancement is attributed to the synergy between the nanoporous architecture of BiVO4 and the plasmonic effects of Au NPs. Our further study reveals that the commendable photoactivity arises from the different plasmonic effects and co-catalyst effects of Au NPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges

Photoelectrochemical (PEC) water splitting, which is a type of artificial photosynthesis, is a sustainable way of converting solar energy into chemical energy. The water oxidation half-reaction has always represented the bottleneck of this process because of the thermodynamic and kinetic challenges that are involved. Several materials have been explored and studied to address the issues pertain...

متن کامل

Photocharged BiVO4 photoanodes for improved solar water splitting

Bismuth vanadate (BiVO4) is a promising semiconductor material for the production of solar fuels via photoelectrochemical water splitting, however, it suffers from substantial recombination losses that limit its performance to well below its theoretical maximum. Here we demonstrate for the first time that the photoelectrochemical (PEC) performance of BiVO4 photoanodes can be dramatically improv...

متن کامل

Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting

Bismuth vanadate (BiVO4) has attracted increasing attention as a photoanode for photoelectrochemical (PEC) water splitting. It has a band gap in the visible light range (2.4−2.5 eV) and a valence band position suitable for driving water oxidation under illumination. While a number of methods have been used to make BiVO4 photoanodes, scalable thin film deposition has remained relatively underexp...

متن کامل

Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation.

We report a scalably synthesized WO3/BiVO4 core/shell nanowire photoanode in which BiVO4 is the primary light-absorber and WO3 acts as an electron conductor. These core/shell nanowires achieve the highest product of light absorption and charge separation efficiencies among BiVO4-based photoanodes to date and, even without an added catalyst, produce a photocurrent of 3.1 mA/cm(2) under simulated...

متن کامل

Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport.

A detailed understanding of doping level, electron diffusion length and coefficient, as well as light capture and charge separation efficiencies in nanoporous Mo-doped BiVO4 (Mo:BiVO4) photoanodes is obtained using photoelectrochemical techniques. Efficient water oxidation is achieved by doping with 1.8% Mo, resulting in a several-fold enhancement in photooxidation rate versus non-doped BiVO4. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 27 23  شماره 

صفحات  -

تاریخ انتشار 2016