On Monotonicity of Difference Schemes for Computational Physics
نویسندگان
چکیده
Criteria are developed for monotonicity of linear as well as nonlinear difference schemes associated with the numerical analysis of systems of partial differential equations, integrodifferential equations, etc. Difference schemes are converted into variational forms that satisfy the boundary maximum principle and also allow the investigation of monotonicity for nonlinear operators using linear patterns. Sufficient conditions are provided to review the monotonicity of single and coupled difference schemes. Necessary as well as necessary and sufficient conditions for monotonicity of explicit schemes are also developed. The notion of submonotone difference schemes is considered and the associated criteria are developed. We discuss the interrelationship between monotonicity, submonotonicity, and stability. Some known schemes serve as examples demonstrating the implementation of the developed approaches. Among these examples, we describe the possibility that stable schemes such as total variation diminishing (TVD) as well as monotonicity preserving can produce spurious oscillations.
منابع مشابه
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملSolving a system of 2D Burgers' equations using Semi-Lagrangian finite difference schemes
In this paper, we aim to generalize semi-Lagrangian finite difference schemes for a system of two-dimensional (2D) Burgers' equations. Our scheme is not limited by the Courant-Friedrichs-Lewy (CFL) condition and therefore we can apply larger step size for the time variable. Proposed schemes can be implemented in parallel very well and in fact, it is a local one-dimensional (LOD) scheme which o...
متن کاملVerification and Validation of Common Derivative Terms Approximation in Meshfree Numerical Scheme
In order to improve the approximation of spatial derivatives without meshes, a set of meshfree numerical schemes for derivative terms is developed, which is compatible with the coordinates of Cartesian, cylindrical, and spherical. Based on the comparisons between numerical and theoretical solutions, errors and convergences are assessed by a posteriori method, which shows that the approximations...
متن کاملAdequate numerical solution of air pollution problems by positive difference schemes on unbounded domains
In this work we deal with the numerical solution of some problems of air pollution. Since the problems are posed on unbounded domains we have to introduce artificial boundaries to confine the computational region. We construct and analyse (discrete) transparent boundary conditions for an implicit difference scheme. We discuss the concepts of positivity and monotonicity of difference schemes and...
متن کاملHigh Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 25 شماره
صفحات -
تاریخ انتشار 2004