Parallel multitask cross validation for Support Vector Machine using GPU

نویسندگان

  • Qi Li
  • Raied Salman
  • Erik Test
  • Robert Strack
  • Vojislav Kecman
چکیده

The Support Vector Machine (SVM) is an efficient tool in machine learning with high accuracy performance. However, in order to achieve the highest accuracy performance, n-fold cross validation is commonly used to identify the best hyperparameters for SVM. This becomes a weak point of SVM due to the extremely long training time for various hyperparameters of different kernel functions. In this paper, a novel parallel SVM training implementation is proposed to accelerate the cross validation procedure by runningmultiple training tasks simultaneously on aGraphics ProcessingUnit (GPU). All of these taskswith different hyperparameters share the same cache memory which stores the kernel matrix of the support vectors. Therefore, this heavily reduces redundant computations of kernel values across different training tasks. Considering that the computations of kernel values are themost time consuming operations in SVM training, the total time cost of the cross validation procedure decreases significantly. The experimental tests indicate that the time cost for the multitask cross validation training is very close to the time cost of the slowest task trained alone. Comparison tests have shown that the proposed method is 10 to 100 times faster compared to the state of the art LIBSVM tool. © 2012 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of transformer faults using frequency response analysis based on cross-correlation technique and support vector machine

One of the most important methods for transformers fault diagnosis (especially mechanical defects) is the frequency response analysis (FRA) method. The most important step in the FRA diagnostic process is to differentiate the faults and classify them in different classes. This paper uses the intelligent support vector machine (SVM) method to classify transformer faults. For this purpose, two gr...

متن کامل

Identification areas with inundation potential for urban runoff harvesting using the support vector machine model

     Rainfall-runoff from urban areas is one of the available water resources, which is wasted due to lack of attention and proper management. Besides, urban runoff excess of drains capacity causing many problems including inundation and urban environmental pollution. Therefore, harvesting this runoff can provide a part of the required water in urban areas, and also reduce flood and urban inund...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

A Neural Network Model Based on Support Vector Machine for Conceptual Cost Estimation in Construction Projects

Estimation of the conceptual costs in construction projects can be regarded as an important issue in feasibility studies. This estimation has a major impact on the success of construction projects. Indeed, this estimation supports the required information that can be employed in cost management and budgeting of these projects. The purpose of this paper is to introduce an intelligent model to im...

متن کامل

GPU Implementation of Parallel Support Vector Machine Algorithm with Applications to Intruder Detection

The network anomaly detection technology based on support vector machine (SVM) can efficiently detect unknown attacks or variants of known attacks, however, it cannot be used for detection of large-scale intrusion scenarios due to the demand of computational time. The graphics processing unit (GPU) has the characteristics of multi-threads and powerful parallel processing capability. Based on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Parallel Distrib. Comput.

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2013