Intracellular calcium concentrations during "chemical hypoxia" and excitotoxic neuronal injury.
نویسندگان
چکیده
Because hypoxic/ischemic neurodegeneration appears to be in part linked to glutamate neurotoxicity, we measured intracellular calcium (Ca2+i) levels in cultured hippocampal neurons during exposure to toxic doses of glutamate (GLU) and to an anoxic environment simulated by sodium cyanide (NaCN). Changes in Ca2+i produced by cyanide greatly exceeded those induced by GLU. The NaCN response was mimicked when oxidative metabolism was also disrupted by sodium azide, oligomycin, or dinitrophenol. Noncompetitive NMDA receptor antagonists and enzymatic GLU degradation abolished the GLU-induced Ca2+i increases and attenuated those produced by NaCN. Only NaCN-induced increases were blocked when dantrolene and ruthenium red were applied to prevent release from intracellular pools. All responses were reduced proportionally in the absence of added external calcium. These results suggest that extracellular GLU accumulation and subsequent activation of GLU receptors were involved in the NaCN response. During such metabolic compromise, however, GLU-induced elevations of Ca2+i were enormously amplified. In parallel toxicity studies, NaCN was not neurotoxic despite the large elevations in Ca2+i, indicating that a general elevation in cytoplasmic calcium does not necessarily predict neurodegeneration.
منابع مشابه
Protective Effects of Berberine on Oxygen-Glucose Deprivation/Reperfusion on Oligodendrocyte Cell Line (OLN-93)
BACKGROUND Oligodendrocytes, the myelinating glial cells of central nervous system, are highly vulnerable to ischemic-induced excitotoxic insult, a phenomenon in which calcium overload triggers cell death. Berberine is an alkaloid extracted from medicinal herbs as Coptidis Rhizoma with several pharmacological effects like inhibition of neuronal apoptosis in cerebral ischemia. METHODS We exami...
متن کاملActivation of a novel injury-induced calcium-permeable channel that plays a key role in causing extended neuronal depolarization and initiating neuronal death in excitotoxic neuronal injury.
Protracted elevation in intracellular calcium caused by the activation of the N-methyl-d-aspartate receptor is the main cause of glutamate excitotoxic injury in stroke. However, upon excitotoxic injury, despite the presence of calcium entry antagonists, calcium unexpectedly continues to enter the neuron, causing extended neuronal depolarization and culminating in neuronal death. This phenomenon...
متن کاملTime course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus
Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...
متن کاملP30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain
Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...
متن کاملChanges in intracellular pH associated with glutamate excitotoxicity.
Excitotoxic neuronal injury is known to be associated with increases in cytosolic calcium ion concentrations. However, it is not known if perturbations in other intracellular ions are also associated with glutamate (GLU)-induced neuronal death. Accordingly, intracellular hydrogen ion concentrations were measured in cultured hippocampal neurons with the fluorescent dye BCECF during and after tox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 11 8 شماره
صفحات -
تاریخ انتشار 1991