The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers.

نویسندگان

  • Li-Bo Han
  • Yuan-Bao Li
  • Hai-Yun Wang
  • Xiao-Min Wu
  • Chun-Li Li
  • Ming Luo
  • Shen-Jie Wu
  • Zhao-Sheng Kong
  • Yan Pei
  • Gai-Li Jiao
  • Gui-Xian Xia
چکیده

LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase-box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers.

Cotton fiber development at the stages of elongation and secondary wall synthesis determines the traits of fiber length and strength. To date, the mechanisms controlling the progression of these two phases remain elusive. In this work, the function of a fiber-preferential actin-binding protein (GhPFN2) was characterized by cytological and molecular studies on the fibers of transgenic green-colo...

متن کامل

Heteromannan and Heteroxylan Cell Wall Polysaccharides Display Different Dynamics During the Elongation and Secondary Cell Wall Deposition Phases of Cotton Fiber Cell Development

The roles of non-cellulosic polysaccharides in cotton fiber development are poorly understood. Combining glycan microarrays and in situ analyses with monoclonal antibodies, polysaccharide linkage analyses and transcript profiling, the occurrence of heteromannan and heteroxylan polysaccharides and related genes in developing and mature cotton (Gossypium spp.) fibers has been determined. Comparat...

متن کامل

TITLE : Cellulose Synthase Catalytic Subunit ( Cesa ) Genes Associated 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 With Primary or Secondary Wall Biosynthesis in Developing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Cotton fibers are unicellular seed trichomes and consist of almost pure cellulose. During the transition from elongation growth to secondary wall thickening, the rate of cellulose biosynthesis in fibers rises nearly 100-fold. Although the first two cellulose synthase catalytic subunits (CesAs) were isolated from developing cotton fibers, it is not...

متن کامل

Gibberellin Overproduction Promotes Sucrose Synthase Expression and Secondary Cell Wall Deposition in Cotton Fibers

Bioactive gibberellins (GAs) comprise an important class of natural plant growth regulators and play essential roles in cotton fiber development. To date, the molecular base of GAs' functions in fiber development is largely unclear. To address this question, the endogenous bioactive GA levels in cotton developing fibers were elevated by specifically up-regulating GA 20-oxidase and suppressing G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 25 11  شماره 

صفحات  -

تاریخ انتشار 2013