Relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality caused by drought
نویسندگان
چکیده
Drought-induced tree mortality has been observed worldwide. Nevertheless, the physiological mechanisms underlying this phenomenon are still being debated. Potted Robinia pseudoacacia and Platycladus orientalis saplings were subjected to drought and their hydraulic failure and carbon starvation responses were studied. They underwent simulated fast drought (FD) and slow drought (SD) until death. The dynamics of their growth, photosynthesis, water relations and carbohydrate concentration were measured. The results showed that during drought, growth and photosynthesis of all saplings were significantly reduced in both species. The predawn water potential in both species was ~ -8 MPa at mortality. The percentage loss of conductivity (PLC) was at a maximum at mortality under both FD and SD. For R. pseudoacacia and P. orientalis, they were >95 and ~45 %, respectively. At complete defoliation, the PLC of R. pseudoacacia was ~90 % but the trees continued to survive for around 46 days. The non-structural carbohydrate (NSC) concentrations in the stems and roots of both FD and SD R. pseudoacacia declined to a very low level near death. In contrast, the NSC concentrations in the needles, stems and roots of P. orientalis at mortality under FD did not significantly differ from those of the control, whereas the NSC concentrations in SD P. orientalis stems and roots at death were significantly lower than those of the control. These results suggest that the duration of the drought affected NSC at mortality in P. orientalis. In addition, the differences in NSC between FD and SD P. orientalis did not alter mortality thresholds associated with hydraulic failure. The drought-induced death of R. pseudoacacia occurred at 95 % PLC for both FD and SD, indicating that hydraulic failure played an important role in mortality. Nevertheless, the consistent decline in NSC in R. pseudoacacia saplings following drought-induced defoliation may have also contributed to its mortality.
منابع مشابه
Carbon starvation during drought-induced tree mortality – are we chasing a myth?
Drought-induced tree mortality has received much attention in the recent past. McDowell et al.’s (2008) hydraulic framework links tree hydraulics with carbon dynamics and proposes two non-exclusive mortality mechanisms: carbon starvation (CS) and hydraulic failure (HF). CS is often referred to as the (partial) depletion of non-structural carbohydrates (NSC) in response to stomatal closure, redu...
متن کاملHow do trees die? A test of the hydraulic failure and carbon starvation hypotheses
Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss o...
متن کاملMeta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe.
Drought-induced tree mortality has been observed globally and is expected to increase under climate change scenarios, with large potential consequences for the terrestrial carbon sink. Predicting mortality across species is crucial for assessing the effects of climate extremes on forest community biodiversity, composition, and carbon sequestration. However, the physiological traits associated w...
متن کاملDrought and shade deplete nonstructural carbohydrate reserves in seedlings of five temperate tree species
Plants that store nonstructural carbohydrates (NSC) may rely on carbon reserves to survive carbon-limiting stress, assuming that reserves can be mobilized. We asked whether carbon reserves decrease in resource stressed seedlings, and if NSC allocation is related to species' relative stress tolerances. We tested the effects of stress (shade, drought, and defoliation) on NSC in seedlings of five ...
متن کاملInfestation and hydraulic consequences of induced carbon starvation.
Drought impacts on forests, including widespread die-off, are likely to increase with future climate change, although the physiological responses of trees to lethal drought are poorly understood. In particular, in situ examinations of carbon starvation and its interactions with and effects on infestation and hydraulic vulnerability are largely lacking. In this study, we conducted a controlled, ...
متن کامل