Physics of Electron Internal Transport Barrier in Toroidal Helical Plasmas
نویسنده
چکیده
The role of zonal flows in the formation of the transport barrier in the helical plasmas is analyzed using the transport code. A set of one-dimensional transport equations is analyzed, including the effect of zonal flows. The turbulent transport coefficient is shown to be suppressed when the plasma state changes from the weak negative radial electric field to the strong positive one. This bifurcation of the turbulent transport is newly caused by the change of the damping rate of zonal flows. It is theoretically demonstrated that the damping rate of zonal flows governs the global confinement in toroidal plasmas.
منابع مشابه
EXC/P4-08 Heat and Momentum Transport of Ion Internal Transport Barrier Plasmas on Large Helical Device
The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-iontemperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam pro...
متن کاملTheoretical Transport Analysis of Density limit with Radial Electric Field in Helical Plasmas
The confinement property in helical toroidal plasmas is clarified. The analysis is performed by use of the one-dimensional transport equations with the effect of the radiative loss and the radial profile of the electric field. The analytical results in the edge region show the steep gradient in the electron temperature, which indicates the transport barrier formation. Because of the rapid incre...
متن کاملImpurity Behavior in ITER and Helical Burning Plasmas with Internal Transport Barriers
The impurity transport simulation code TOTAL (TOroidal Transport Analysis Linkage) consisting of 1-D(dimensional) transport and 2or 3-D equilibrium is developed for analyzing tokamak and helical burning plasmas controlled by feedback scheme with gas puffing, pellet fueling injection and heating power modulations. In this code multi-species of impurity ions can be treated including neoclassical ...
متن کاملPaleoclassical transport in low-collisionality toroidal plasmas
Radial electron heat transport in a low-collisionality, current-carrying resistive plasma confined in an axisymmetric toroidal magnetic field is hypothesized to be caused by the paleoclassical collisional processes of parallel electron heat conduction and radial magnetic-field diffusion. The electron distribution is Maxwellianized and the electron temperature equilibrated over a long length L t...
متن کاملPaleoclassical electron heat transport
It has been hypothesized that radial electron heat transport in low collisionality, current-carrying magnetically-confined toroidal plasmas results from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron ...
متن کامل