Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975.
نویسندگان
چکیده
The recombinant fructosyltransferase (Ftf) of Streptococcus salivarius was expressed in Escherichia coli and purified to electrophoretic homogeneity after a combination of adsorption, ion-exchange and gel-filtration chromatography. The N-terminal signal sequence of the Ftf was removed by E. coli at the same site as in its natural host. The purified Ftf exhibited maximum activity at pH 6.0 and 37 degrees C, was activated by Ca2+, but inhibited by the metal ions Cu2+, Zn2+, Hg2+ and Fe3+. The enzyme catalysed the transfer of the fructosyl moiety of sucrose to a number of acceptors, including water, glucose and sucrose via a Ping Pong mechanism involving a fructosyl-enzyme intermediate. While this mechanism of catalysis is utilized by the levansucrases of Bacillus subtilis and Acetobacter diazotrophicus and the values of the kinetic constants for the three enzymes are similar, sucrose was a far more efficient fructosyl-acceptor for the Ftf of S. salivarius than for the two other enzymes.
منابع مشابه
Role of C-terminal domains in surface attachment of the fructosyltransferase of Streptococcus salivarius ATCC 25975.
The cell-associated beta-D-fructosyltransferase of Streptococcus salivarius, which is devoid of the cell wall anchoring motif, LPXTG, is released on exposure to its substrate, sucrose. Deletions within the C terminus of the enzyme implicated both the hydrophobic and the proline-glycine-serine-threonine-rich wall-associated domain in stabilizing the enzyme on the cell surface.
متن کاملComplete Genome Sequences of Two Human Oral Microbiome Commensals: Streptococcus salivarius ATCC 25975 and S. salivarius ATCC 27945
Streptococcus salivarius strains are significant contributors to the human oral microbiome. Some possess unique fimbriae that give them the ability to coaggregate and colonize particular oral structures. We present here the complete genomes of Streptococcus salivarius Lancefield K-/K+ strains ATCC 25975 and ATCC 27945, which can and cannot, respectively, produce fimbriae.
متن کاملMutation of aspartic acid residues in the fructosyltransferase of Streptococcus salivarius ATCC 25975.
The site-directed mutated fructosyltransferases (Ftfs) of Streptococcus salivarius ATCC 25975, D312E, D312S, D312N and D312K were all active at 37 degrees C, indicating that Asp-312 present in the 'sucrose box' was not the nucleophilic Asp residue responsible for the formation of a covalent fructosyl-enzyme intermediate required for enzyme activity. Analysis of the kinetic constants of the puri...
متن کاملInactivation of cell-associated fructosyltransferase in Streptococcus salivarius.
In stationary phase, 95% of the fructosyltransferase (FTase) activity of Streptococcus salivarius ATCC 25975 was found associated with the cells. Within the first 15 min after inoculation into fresh medium, the specific activity of cell-associated FTase decreased by 92% of its initial value. After this period of initial loss, the enzyme was synthesized during exponential growth until a maximum ...
متن کاملThe HPr(Ser) kinase of Streptococcus salivarius: purification, properties, and cloning of the hprK gene.
In gram-positive bacteria, HPr, a protein of the phosphoenolpyruvate:sugar phosphotransferase system, is phosphorylated on a serine residue at position 46 by an ATP-dependent protein kinase. The HPr(Ser) kinase of Streptococcus salivarius ATCC 25975 was purified, and the encoding gene (hprK) was cloned by using a nucleotide probe designed from the N-terminal amino acid sequence. The predicted a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 341 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1999