Supervised Baysian SAR image Classification Using The Full Polarimetric Data

نویسنده

  • Ziad BELHADJ
چکیده

Supervised classification procedures are developed and applied to synthetic aperture radar (SAR) in order to identify their various earth terrain components. An implementation of the maximum a posteriori (MAP) and the maximum likelihood (ML) algorithms are presented. These two techniques need a statistic model for the conditional distribution of the polarimetric complex data. Many previous studies used the classical Rayleigh distribution to characterize the earth terrain, but this model doesn’t yield a good result for heterogeneous backscattering media. This study applies a new model based on the K-distribution. This distribution, based on the physical definition of the texture and its mathematical representation, will be shown as rigorous model to describe amplitudes and intensities of the backscattering signal. We also use Markov fields to enhance the results of the classifications. These classification procedures have been applied to the Flevoland site (Holland) and Landes forest (France) SAR images, supplied by the Jet Propulsion Laboratory. Key-Words : SAR Images, Supervised Classification, K-distribution, Markov Random Field

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Polarimetric SAR Image Classification Using Different Learning Approaches

This paper compares multilook Polarimetric SAR (PolSAR) image classification using three types of learning: a supervised, an unsupervised and a semisupervised. The multilook PolSAR pixel values are complex covariance matrices and they are described by mixtures of Wishart distributions. Tests in synthetic and real images showed that the supervised and semisupervised classifications provided the ...

متن کامل

Filtering Effect in Supervised Classification of Polarimetric Ground Based SAR Images

We investigated the speckle filtering effect in supervised classification of the C-band polarimetric Ground Based SAR image data. Wishart classification method was used for the supervised classification of the polarimetric GB-SAR image data and total of 6 kinds of speckle filters were applied before supervised classification, which are boxcar, Gaussian, Lopez, IDAN, the refined Lee, and the ref...

متن کامل

Land Use and Land Cover Classification Using Radarsat-2 Polarimetric Sar Image

Traditional pixel-based classification methods yield poor results when applied to synthetic aperture radar (SAR) imagery because of the presence of the speckle and limited spectral information in SAR data. A novel classification method, integrating polarimetric target decomposition, object-oriented image analysis, and decision tree algorithms, is proposed for land use and land cover (LULC) clas...

متن کامل

Microwave Imaging Using SAR

Polarimetric Synthetic Aperture Radar (Pol.-SAR) allows us to implement the recognition and classification of radar targets. This article investigates the arrangement of scatterers by SAR data and proposes a new Look-up Table of Region (LTR). This look-up table is based on the combination of (entropy H/Anisotropy A) and (Anisotropy A/scattering mechanism α), which has not been reported up now. ...

متن کامل

Iteration Based Polarimetric SAR Image Classification

In this paper, an iteration method is proposed for supervised polarimetric synthetic aperture radar (SAR) image classification. In this iterative approach, the optimization of polarimetric contrast enhancement (OPCE) is employed for enlarging the distance between the mean values of two kinds of targets and the Fisher method is employed for reducing the variances of two distributions. Using the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001