A Longitudinal Low Dose μCT Analysis of Bone Healing in Mice: A Pilot Study
نویسندگان
چکیده
Low dose microcomputed tomography (μCT) is a recently matured technique that enables the study of longitudinal bone healing and the testing of experimental treatments for bone repair. This imaging technique has been used for studying craniofacial repair in mice but not in an orthopedic context. This is mainly due to the size of the defects (approximately 1.0 mm) in long bone, which heal rapidly and may thus negatively impact the assessment of the effectiveness of experimental treatments. We developed a longitudinal low dose μCT scan analysis method combined with a new image segmentation and extraction software using Hounsfield unit (HU) scores to quantitatively monitor bone healing in small femoral cortical defects in live mice. We were able to reproducibly quantify bone healing longitudinally over time with three observers. We used high speed intramedullary reaming to prolong healing in order to circumvent the rapid healing typical of small defects. Bone healing prolongation combined with μCT imaging to study small bone defects in live mice thus shows potential as a promising tool for future preclinical research on bone healing.
منابع مشابه
Evaluation of high-resolution In Vivo MRI for longitudinal analysis of endochondral fracture healing in mice
Mice are extensively used for experimental bone-healing studies. However, there are few established nondestructive in vivo techniques for longitudinal fracture-healing analysis in mice, including in vivo micro-computed tomography (μCT) and radiography. Importantly, none of the established methods can discriminate between non-mineralized fibrous tissue and cartilage in the soft fracture callus. ...
متن کاملInfluence of longitudinal radiation exposure from microcomputed tomography scanning on skeletal muscle function and metabolic activity in female CD‐1 mice
Microcomputed tomography (μCT) is an imaging technology to assess bone microarchitecture, a determinant of bone strength. When measured in vivo, μCT exposes the skeletal site of interest to a dose of radiation, in addition to nearby skeletal muscles as well. Therefore, the aim of this study was to determine the effects of repeated radiation exposure from in vivo μCT on muscle health - specifica...
متن کاملp21−/− mice exhibit enhanced bone regeneration after injury
BACKGROUND p21(WAF1/CIP1/SDI1), a cyclin dependent kinase inhibitor has been shown to influence cell proliferation, differentiation and apoptosis; but more recently, p21 has been implicated in tissue repair. Studies on p21(-/-) knockout mice have demonstrated results that vary from complete regeneration and healing of tissue to attenuated healing. There have however been no studies that have ev...
متن کاملTrabecular bone changes induced by fast neutrons versus gamma rays in mice
Background: The trabecular bone changes in the tibia of C3H/HeN mice were measured 12 weeks after whole body irradiation with various doses of fast neutrons (0-2.4 Gy) or 137Cs-generated gamma-rays (0-6 Gy). Materials and Methods: Serum calcium, phosphorus, estradiol concentration and alkaline phosphatase activity were measured. Tibiae were anal...
متن کاملClosed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture
Concomitant traumatic brain injury (TBI) and long bone fracture are commonly observed in multitrauma and polytrauma. Despite clinical observations of enhanced bone healing in patients with TBI, the relationship between TBI and fracture healing remains poorly understood, with clinical data limited by the presence of several confounding variables. Here we developed a novel trauma model featuring ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014