Automated Synthesis of Computing Nanoscale Crossbars using Formal Methods
ثبت نشده
چکیده
Since the fabrication of nanoscale memristors by HP Labs in 2008, there has been a renewed interest in the use of crossbars of nanoscale memristors as digital storage and neuromorphic computing devices. However, the same success has not been replicated in the use of crossbars for performing general-purpose computations that can support the existing software infrastructure originally designed for Von Neumann architectures. One of the key challenges facing this technology is the existence of sneak paths. While it has been shown that sneak paths can be used to perform Boolean computations in crossbars, the human mind is not particularly suited to reason about the exponential complexity of sneak paths in crossbars. Hence, the size of the crossbar designs proposed in the literature has been large for practical applications. In this paper, we demonstrate how formal methods can be used to automatically synthesize compact crossbar designs that can be used to evaluate Boolean formula by using the sneak paths phenomena as a design primitive. We show that our automated synthesis technique can be used to generate a state-of-the-art nano-crossbar design for a 1-bit full adder.
منابع مشابه
Ideal and Resistive Nanowire Decoders General models for nanowire addressing
Recent research in nanoscale computing offers multiple techniques for producing large numbers of parallel nanowires (NWs). These wires can be assembled into crossbars, two orthogonal sets of parallel NWs separated by a layer of molecular devices. In a crossbar, pairs of orthogonal NWs provides control over the molecules at their crosspoints. Hysteretic molecules act as programmable diodes, allo...
متن کاملLutetium-177 DOTATATE Production with an Automated Radiopharmaceutical Synthesis System
Objective(s): Peptide Receptor Radionuclide Therapy (PRRT) with yttrium-90 (90Y) and lutetium-177 (177Lu)-labelled SST analogues are now therapy option for patients who have failed to respond to conventional medical therapy. In-house production with automated PRRT synthesis systems have clear advantages over manual methods resulting in increasing use in hospital-based radiopharmacies. We report...
متن کاملSelf-Healing Wire-Streaming Processors on 2-D Semiconductor Nanowire Fabrics
With recent promising progress on nanoscale devices including semiconductor nanowires and nanowire crossbars, researchers are trying to explore the possibility of building nanoscale computing systems. We have designed a nanoscale application-specific architecture called NASIC, which is based on semiconductor nanowire grids and FETs at crosspoints. In this paper, we propose a built-in redundancy...
متن کاملGallium‐68 DOTATATE Production with Automated PET Radiopharmaceutical Synthesis System: A Three Year Experience
Objective(s): Gallium‐68 (Ga‐68) is an ideal research and hospital‐based PET radioisotope. Currently, the main form of Ga‐68 radiopharmaceutical that is being synthesised in‐house is Ga‐68 conjugated with DOTA based derivatives. The development of automated synthesis systems has increased the reliability, reproducibility and safety of radiopharmaceutical productions. Here we report on our three...
متن کاملCombining Circuit Level and System Level Techniques for Defect-Tolerant Nanoscale Architectures
Recent research progress on nanoscale devices such as based on nanowire (NW) crossbars shows great promise towards building nanoscale computing systems. This paper is part of our ongoing effort to develop and evaluate highdensity, defect-tolerant architectures on such fabrics. Our designs are based on Nanoscale Application Specific ICs (NASICs), and are primarily targeted towards microprocessor...
متن کامل