Prediction of Protein Coarse Contact Maps

نویسندگان

  • Alessandro Vullo
  • Paolo Frasconi
چکیده

Prediction of topological representations of proteins that are geometrically invariants can contribute towards the solution of fundamental open problems in structural genomics like folding. In this paper we focus on coarse grained protein contact maps, a representation that describes the spatial neighborhood relation between secondary structure elements such as helices, beta sheets, and random coils. Our methodology is based on searching the graph space. The search algorithm is guided by an adaptive evaluation function computed by a specialized noncausal recursive connectionist architecture. The neural network is trained using candidate graphs generated during examples of successful searches. Our results demonstrate the viability of the approach for predicting coarse contact maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bi-Recursive Neural Network Architecture for the Prediction of Protein Coarse Contact Maps

Prediction of contact maps may be seen as a strategic step towards the solution of fundamental open problems in structural genomics. In this paper we focus on coarse grained maps that describe the spatial neighborhood relation between secondary structure elements (helices, strands, and coils) of a protein. We introduce a new machine learning approach for scoring candidate contact maps. The meth...

متن کامل

Prediction of Protein Topologies Using GIOHMMs and GRNNs

We develop and test new machine learning methods for the prediction of topological representations of protein structures in the form of coarse-or ne-grained contact or distance maps that are translation and rotation invariant. The methods are based on generalized input-output hidden Markov models (GIOHMMs) and generalized recursive neural networks (GRNNs). The methods are used to predict topolo...

متن کامل

Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners

MOTIVATION Accurate prediction of protein contact maps is an important step in computational structural proteomics. Because contact maps provide a translation and rotation invariant topological representation of a protein, they can be used as a fundamental intermediary step in protein structure prediction. RESULTS We develop a new set of flexible machine learning architectures for the predict...

متن کامل

Mining of protein contact maps for protein fold prediction

Contact maps have been used in ab initio methods for the problem of protein structure prediction problem. Secondary structures and contacts made by the residues are clearly visible in the contact maps where helices are seen as thick bands and the beta sheets are seen as orthogonal to the diagonal. This paper explores the idea of extracting rules from contact maps to represent “protein fold” inf...

متن کامل

New Machine Learning Methods for the Prediction of Protein Topologies

Protein structures are translation and rotation invariant. In protein structure prediction, it is therefore important to be able to assess and predict intermediary topological representations, such as distance or contact maps, that are translation and rotation invariant. Here we develop several new machine learning methods for the prediction and assessment of fine-grained and coarse topological...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bioinformatics and computational biology

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 2003