The role of magnetic fields for planetary formation

نویسنده

  • Anders Johansen
چکیده

The role of magnetic fields for the formation of planets is reviewed. Protoplanetary disc turbulence driven by the magnetorotational instability has a huge influence on the early stages of planet formation. Small dust grains are transported both vertically and radially in the disc by turbulent diffusion, counteracting sedimentation to the mid-plane and transporting crystalline material from the hot inner disc to the outer parts. The conclusion from recent efforts to measure the turbulent diffusion coefficient of magnetorotational turbulence is that turbulent diffusion of small particles is much stronger than naively thought. Larger particles – pebbles, rocks and boulders – get trapped in long-lived high pressure regions that arise spontaneously at large scales in the turbulent flow. These gas high pressures, in geostrophic balance with a sub-Keplerian/super-Keplerian zonal flow envelope, are excited by radial fluctuations in the Maxwell stress. The coherence time of the Maxwell stress is only a few orbits, where as the correlation time of the pressure bumps is comparable to the turbulent mixing time-scale, many tens or orbits on scales much greater than one scale height. The particle overdensities contract under the combined gravity of all the particles and condense into gravitationally bound clusters of rocks and boulders. These planetesimals have masses comparable to the dwarf planet Ceres. I conclude with thoughts on future priorities in the field of planet formation in turbulent discs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars

Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...

متن کامل

Implications of the PSR 1257+12 Planetary System for Isolated Millisecond Pulsars

The first extrasolar planets were discovered in 1992 around the millisecond pulsar PSR 1257+12. We show that recent developments in the study of accretion onto magnetized stars, plus the existence of the innermost, moon-sized planet in the PSR 1257+12 system, suggest that the pulsar was born with approximately its current rotation frequency and magnetic moment. If so, this has important implica...

متن کامل

Disk Winds Driven by Magnetorotational Instability and Dispersal of Proto-planetary Disks

By performing local three-dimensional MHD simulations of stratified accretion disks, we investigate disk winds driven by MHD turbulence. Initially given weak vertical magnetic fields are effectively amplified by magnetorotational instability and winding due to differential rotation. Large scale channel flows develop most effectively at 1.5 2 times the scale heights where the magnetic pressure i...

متن کامل

Why Magnetic Fields Cannot be the Main Agent Shaping Planetary Nebulae

An increasing amount of literature reports the detection of magnetic fields in asymptotic giant branch (AGB) stars and in central stars of planetary nebulae (PNs). These detections lead to claims that the magnetic fields are the main agent shaping the PNs. In this paper, I examine the energy and angular momentum carried by magnetic fields expelled from AGB stars, as well as other physical pheno...

متن کامل

High resolution spectra of bright central stars of bipolar planetary nebulae, and the question of magnetic shaping

We present ESO NTT high resolution echelle spectroscopy of the central stars (CSs) of eight southern bipolar planetary nebulae (PNe) selected for their asymmetry. Our aim was to determine or place limits on the magnetic fields of the CSs of these nebulae, and hence to explore the role played by magnetic fields in nebular morphology and PN shaping. If magnetic fields do play a role, we expect th...

متن کامل

Accretion Discs, Low-mass Protostars and Planets: Probing the Impact of Magnetic Fields on Stellar Formation

Whereas the understanding of most phases of stellar evolution made considerable progress throughout the whole of the twentieth century, stellar formation remained rather enigmatic and poorly constrained by observations until about three decades ago, when major discoveries (e.g., that protostars are often associated with highly collimated jets) revolutionized the field. At this time, it became i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009