Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS.
نویسندگان
چکیده
Tenascin-R (TN-R), an extracellular matrix glycoprotein of the CNS, localizes to nodes of Ranvier and perineuronal nets and interacts in vitro with other extracellular matrix components and recognition molecules of the immunoglobulin superfamily. To characterize the functional roles of TN-R in vivo, we have generated mice deficient for TN-R by homologous recombination using embryonic stem cells. TN-R-deficient mice are viable and fertile. The anatomy of all major brain areas and the formation and structure of myelin appear normal. However, immunostaining for the chondroitin sulfate proteoglycan phosphacan, a high-affinity ligand for TN-R, is weak and diffuse in the mutant when compared with wild-type mice. Compound action potential recordings from optic nerves of mutant mice show a significant decrease in conduction velocity as compared with controls. However, at nodes of Ranvier there is no apparent change in expression and distribution of Na+ channels, which are thought to bind to TN-R via their beta2 subunit. The distribution of carbohydrate epitopes of perineuronal nets recognized by the lectin Wisteria floribunda or antibodies to the HNK-1 carbohydrate on somata and dendrites of cortical and hippocampal interneurons is abnormal. These observations indicate an essential role for TN-R in the formation of perineuronal nets and in normal conduction velocity of optic nerve.
منابع مشابه
Versican V2 assembles the extracellular matrix surrounding the nodes of ranvier in the CNS.
The CNS-restricted versican splice-variant V2 is a large chondroitin sulfate proteoglycan incorporated in the extracellular matrix surrounding myelinated fibers and particularly accumulating at nodes of Ranvier. In vitro, it is a potent inhibitor of axonal growth and therefore considered to participate in the reduction of structural plasticity connected to myelination. To study the role of vers...
متن کاملGlycosylation of a CNS-specific extracellular matrix glycoprotein, tenascin-R, is dominated by O-linked sialylated glycans and "brain-type" neutral N-glycans.
As a member of the tenascin family of extracellular matrix glycoproteins, tenascin-R is located exclusively in the CNS. It is believed to play a role in myelination and axonal stabilization and, through repulsive properties, may contribute to the lack of regeneration of CNS axons following damage. The contrary functions of the tenascins have been localized to the different structural domains of...
متن کاملGeneration of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C.
Stem cells in the embryonic mammalian CNS are initially responsive to fibroblast growth factor 2 (FGF2). They then undergo a developmental programme in which they acquire epidermal growth factor (EGF) responsiveness, switch from the production of neuronal to glial precursors and become localized in specialized germinal zones such as the subventricular zone (SVZ). Here we show that extracellular...
متن کاملImpairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C.
The extracellular matrix glycoprotein tenascin-C (TN-C) has been suggested to play important functional roles during neural development, axonal regeneration, and synaptic plasticity. We generated a constitutively TN-C-deficient mouse mutant from embryonic stem cells with a floxed tn-C allele, representing a standard for future analysis of conditionally targeted mice. The gross morphology of the...
متن کاملDisruption of laminin beta2 chain production causes alterations in morphology and function in the CNS.
From the elegant studies of Ramon y Cajal (1909) to the current advances in molecular cloning (e.g., Farber and Danciger, 1997), the retina has served as an ideal model for the entire CNS. We have taken advantage of the well described anatomy, physiology, and molecular biology of the retina to begin to examine the role of the laminins, one component of the extracellular matrix, on the processes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 11 شماره
صفحات -
تاریخ انتشار 1999