An Empirical Comparison of Information-Theoretic Criteria in Estimating the Number of Independent Components of fMRI Data

نویسندگان

  • Mingqi Hui
  • Juan Li
  • Xiaotong Wen
  • Li Yao
  • Zhiying Long
چکیده

BACKGROUND Independent Component Analysis (ICA) has been widely applied to the analysis of fMRI data. Accurate estimation of the number of independent components of fMRI data is critical to reduce over/under fitting. Although various methods based on Information Theoretic Criteria (ITC) have been used to estimate the intrinsic dimension of fMRI data, the relative performance of different ITC in the context of the ICA model hasn't been fully investigated, especially considering the properties of fMRI data. The present study explores and evaluates the performance of various ITC for the fMRI data with varied white noise levels, colored noise levels, temporal data sizes and spatial smoothness degrees. METHODOLOGY Both simulated data and real fMRI data with varied Gaussian white noise levels, first-order auto-regressive (AR(1)) noise levels, temporal data sizes and spatial smoothness degrees were carried out to deeply explore and evaluate the performance of different traditional ITC. PRINCIPAL FINDINGS Results indicate that the performance of ITCs depends on the noise level, temporal data size and spatial smoothness of fMRI data. 1) High white noise levels may lead to underestimation of all criteria and MDL/BIC has the severest underestimation at the higher Gaussian white noise level. 2) Colored noise may result in overestimation that can be intensified by the increase of AR(1) coefficient rather than the SD of AR(1) noise and MDL/BIC shows the least overestimation. 3) Larger temporal data size will be better for estimation for the model of white noise but tends to cause severer overestimation for the model of AR(1) noise. 4) Spatial smoothing will result in overestimation in both noise models. CONCLUSIONS 1) None of ITC is perfect for all fMRI data due to its complicated noise structure. 2) If there is only white noise in data, AIC is preferred when the noise level is high and otherwise, Laplace approximation is a better choice. 3) When colored noise exists in data, MDL/BIC outperforms the other criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

Comparison of different empirical methods for estimating ddaily reference evapotranspiration in the humid cold climate (case study: Borujen, Shahrekord, Koohrang and Lordegan)

The proposed method for calculation of potential evapotranspiration is Penman-Monteith FAO method, but there are other methods that require less meteorological data but estimates close to the FAO Penman-Monteith method in different climatic conditions.  Performance evaluation of these methods on the same basis is prerequisite for selecting an alternative approach in accordance with available da...

متن کامل

Independent Component Analysis Applied to Fmri Data: a Natural Model and Order Selection

We introduce a framework for the application of independent component analysis (ICA) to functional magnetic resonance (fMRI) data. We present a model for the task with two main sections: data generation (synthesis) and data processing (analysis) and give examples of how such a model can be utilized in fMRI analysis. We assume a generative model for the data involving 1) the signal being measure...

متن کامل

Order Selection of the Linear Mixing Model for Complex-Valued FMRI Data

Functional magnetic resonance imaging (fMRI) data are originally acquired as complex-valued images, which motivates the use of complex-valued data analysis methods. Due to the high dimension and high noise level of fMRI data, order selection and dimension reduction are important procedures for multivariate analysis methods such as independent component analysis (ICA). In this work, we develop a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011