Superior Silencing by 2′,4′-BNANC-Based Short Antisense Oligonucleotides Compared to 2′,4′-BNA/LNA-Based Apolipoprotein B Antisense Inhibitors
نویسندگان
چکیده
The duplex stability with target mRNA and the gene silencing potential of a novel bridged nucleic acid analogue are described. The analogue, 2',4'-BNA(NC) antisense oligonucleotides (AONs) ranging from 10- to 20-nt-long, targeted apolipoprotein B. 2',4'-BNA(NC) was directly compared to its conventional bridged (or locked) nucleic acid (2',4'-BNA/LNA)-based counterparts. Melting temperatures of duplexes formed between 2',4'-BNA(NC)-based antisense oligonucleotides and the target mRNA surpassed those of 2',4'-BNA/LNA-based counterparts at all lengths. An in vitro transfection study revealed that when compared to the identical length 2',4'-BNA/LNA-based counterpart, the corresponding 2',4'-BNA(NC)-based antisense oligonucleotide showed significantly stronger inhibitory activity. This inhibitory activity was more pronounced in shorter (13-, 14-, and 16-mer) oligonucleotides. On the other hand, the 2',4'-BNA(NC)-based 20-mer AON exhibited the highest affinity but the worst IC(50) value, indicating that very high affinity may undermine antisense potency. These results suggest that the potency of AONs requires a balance between reward term and penalty term. Balance of these two parameters would depend on affinity, length, and the specific chemistry of the AON, and fine-tuning of this balance could lead to improved potency. We demonstrate that 2',4'-BNA(NC) may be a better alternative to conventional 2',4'-BNA/LNA, even for "short" antisense oligonucleotides, which are attractive in terms of drug-likeness and cost-effective bulk production.
منابع مشابه
N-Methyl substituted 2',4'- BNANC: a highly nuclease-resistant nucleic acid analogue with high-affinity RNA selective hybridization.
Oligonucleotides modified with a novel BNA analogue, 2', 4'-BNA(NC)[N-Me], were synthesized, and in comparison to 2',4'-BNA (LNA), have similarly high RNA affinity, better RNA selectivity and much higher resistance to nuclease degradation, suggesting that the novel BNA analogue may be particularly useful for antisense approaches.
متن کاملBNANC Gapmers Revert Splicing and Reduce RNA Foci with Low Toxicity in Myotonic Dystrophy Cells.
Myotonic dystrophy type 1 (DM1) is a multisystemic disease caused by an expanded CTG repeat in the 3' UTR of the dystrophia myotonica protein kinase (DMPK) gene. Short, DNA-based antisense oligonucleotides termed gapmers are a promising strategy to degrade toxic CUG expanded repeat (CUGexp) RNA. Nucleoside analogs are incorporated to increase gapmer affinity and stability; however, some analogs...
متن کاملAssessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: a methodology for inhibition of expression of antibiotic resistance genes
EGSs (external guide sequences) are short antisense oligoribonucleotides that elicit RNase P-mediated cleavage of a target mRNA, which results in inhibition of gene expression. EGS technology is used to inhibit expression of a wide variety of genes, a strategy that may lead to development of novel treatments of numerous diseases, including multidrug-resistant bacterial and viral infections. Suc...
متن کاملCholesterol-lowering Action of BNA-based Antisense Oligonucleotides Targeting PCSK9 in Atherogenic Diet-induced Hypercholesterolemic Mice
Recent findings in molecular biology implicate the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in low-density lipoprotein receptor (LDLR) protein regulation. The cholesterol-lowering potential of anti-PCSK9 antisense oligonucleotides (AONs) modified with bridged nucleic acids (BNA-AONs) including 2',4'-BNA (also called as locked nucleic acid (LNA)) and 2',4'-BNA(NC) che...
متن کاملShort locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates
The potency and specificity of locked nucleic acid (LNA) antisense oligonucleotides was investigated as a function of length and affinity. The oligonucleotides were designed to target apolipoprotein B (apoB) and were investigated both in vitro and in vivo. The high affinity of LNA enabled the design of short antisense oligonucleotides (12- to 13-mers) that possessed high affinity and increased ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012