Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5'-EXO/endonuclease) in their repair.

نویسندگان

  • Anne W Tann
  • Istvan Boldogh
  • Gregor Meiss
  • Wei Qian
  • Bennett Van Houten
  • Sankar Mitra
  • Bartosz Szczesny
چکیده

Reactive oxygen species (ROS), continuously generated as by-products of respiration, inflict more damage on the mitochondrial (mt) than on the nuclear genome because of the nonchromatinized nature and proximity to the ROS source of the mitochondrial genome. Such damage, particularly single-strand breaks (SSBs) with 5'-blocking deoxyribose products generated directly or as repair intermediates for oxidized bases, is repaired via the base excision/SSB repair pathway in both nuclear and mt genomes. Here, we show that EXOG, a 5'-exo/endonuclease and unique to the mitochondria unlike FEN1 or DNA2, which, like EXOG, has been implicated in the removal of the 5'-blocking residue, is required for repairing endogenous SSBs in the mt genome. EXOG depletion induces persistent SSBs in the mtDNA, enhances ROS levels, and causes apoptosis in normal cells but not in mt genome-deficient rho0 cells. Thus, these data show for the first time that persistent SSBs in the mt genome alone could provide the initial trigger for apoptotic signaling in mammalian cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apoptosis Induced by Persistent Single-strand Breaks in the Mitochondrial Genome: Critical Role of Exog (5’ Exo/endonuclease) in Their Repair

1 Department of Biochemistry & Molecular Biology, 2 Department of Microbiology & Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1079, USA, 3 Institute of Biochemistry, Faculty of Biology and Chemistry, Justus-LiebigUniversity, Heinrich-Buff-Ring 58, 35392 Giessen, Germany, 4 Department of Pharmacology and Chemical Biology, University of Pittsburgh ...

متن کامل

Deficiency in Repair of the Mitochondrial Genome Sensitizes Proliferating Myoblasts to Oxidative Damage

Reactive oxygen species (ROS), generated as a by-product of mitochondrial oxidative phosphorylation, are particularly damaging to the genome of skeletal muscle because of their high oxygen consumption. Proliferating myoblasts play a key role during muscle regeneration by undergoing myogenic differentiation to fuse and restore damaged muscle. This process is severely impaired during aging and in...

متن کامل

Long patch base excision repair in mammalian mitochondrial genomes.

The mitochondrial genome is highly susceptible to damage by reactive oxygen species (ROS) generated endogenously as a byproduct of respiration. ROS-induced DNA lesions, including oxidized bases, abasic (AP) sites, and oxidized AP sites, cause DNA strand breaks and are repaired via the base excision repair (BER) pathway in both the nucleus and mitochondria. Repair of damaged bases and AP sites i...

متن کامل

Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS-mediated cardiomyocyte hypertrophy.

Recently, a locus at the mitochondrial exo/endonuclease EXOG gene, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and hypertrophy in cardiomyocytes. Depletion of EXOG in primary neonatal rat ventricular cardiomyocytes (NRVCs) indu...

متن کامل

Simulation of strand breaks induced in DNA molecule by radiation of proton and Secondary particles using Geant4 code

Radiotherapy using various beams is one of the methods for treating cancer, Hadrons  used   to  treat cancers  that  are  near critical organs. The most important part of the cell that is damage by ionizing radiation is DNA. In this study, damages induced in the  genetic material of  living cells (DNA) defined by  the  atomic model from the  protein data bank (PDB) have been studied by  radiati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 37  شماره 

صفحات  -

تاریخ انتشار 2011