Kohonen Feature Map Associative Memory with Area Representation

نویسندگان

  • Hitoshi Abe
  • Yuko Osana
چکیده

In this paper, we propose a Kohonen feature map associative memory with area representation for sequential patterns. This model is based on the Kohonen feature map associative memory with area representation and the Kohonen feature map associative memory for temporal sequences. The proposed model can learn sequential patterns successively, and has robustness for damaged neurons. We carried out a series of computer experiments and confirmed that the effectiveness of the proposed model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable-Sized Kohonen Feature Map Probabilistic Associative Memory

This paper presents a Variable-sized Kohonen Feature Map Probabilistic Associative Memory for Sequential Patterns (VKFMPAM-SP) which can realize successive (additional) learning for sequential patterns. In the proposed model, since the connection weights of the neurons which are centers of the area corresponding to the stored data are fixed, new patterns can be memorized without destroying memo...

متن کامل

On-line recognition of handwritten Arabic characters using a Kohonen neural network

Neural networks have been applied to various pattern classification and recognition problems for their learning ability, discrimination power, and generalization ability. The neural network most referenced in the pattern recognition literature are the multi-layer perceptron, the Kohonen associative memory and the Capenter-Grossberg ART network. The Kohonen memory runs an unsupervised clustering...

متن کامل

Reinforcement Learning using Kohonen Feature Map Probabilistic Associative Memory based on Weights Distribution

The reinforcement learning is a sub-area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward(Sutton & Barto, 1998). Reinforcement learning algorithms attempt to find a policy that maps states of the world to the actions the agent ought to take in those states. Temporal Difference (TD) learning is one of the re...

متن کامل

Towards an Information Density Measure for Neural Feature Maps

Many neural models have been suggested for the development of feature maps in cortical areas. Undoubtedly the most popular model is the Kohonen self-organizing map (SOM). Once the map has been learned, this network uses a competitive winner-take-all (WTA) approach to choose a singlèbest' output neuron on a (typically) 2D grid for each presented input pattern. Cortical maps in biological organis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006