Homotopy Analysis Method for Nonlinear Dynamical System of an Electrostatically Actuated Microcantilever
نویسندگان
چکیده
The homotopy analysis method HAM is employed to propose an approach for solving the nonlinear dynamical system of an electrostatically actuated micro-cantilever in MEMS. There are two relative merits of the presented HAM compared with some usual procedures of the HAM. First, a new auxiliary linear operator is constructed. This operator makes it unnecessary to eliminate any secular terms. Furthermore, all the deformation equations are purely linear. Numerical examples show the excellent agreement of the attained solutions with numerical ones. The respective effects of applied voltage, cubic nonlinear stiffness, gap distance, and squeeze film damping on vibration responses are analyzed detailedly.
منابع مشابه
Dynamic and Static Pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping
In the current study, the effects of Casimir force and squeeze film damping on pull-in instability and dynamic behavior of electrostatically actuated nano and micro electromechanical systems are investigated separately. Linear elastic membrane theory is used to model the static and dynamic behavior of the system for strip, annular and disk geometries. Squeeze film damping is modeled using nonli...
متن کاملAsymptotic Analytical Solutions of an Electrostatically Actuated Microbeam Base on Homotopy Analysis Method
Presented herein is an analytical approach based on homotopy analysis method (HAM) used to deal with the seventh-order Duffing type problem with high-order nonlinearity. Such a problem corresponds to the large-amplitude vibration of an electrostatically actuated microbeam. Unlike tradition HAM, the convergence-control auxiliary parameters ( ) i i 1,2 m = ħ ⋯ are introduced in the present approx...
متن کاملA Numerical Improvement in Analyzing the Dynamic Characteristics of an Electrostatically Actuated Micro-beam in Fluid Loading with Free Boundary Approach
Electrostatically actuated microbeams have been studied by many researchers in the last few years. The aim of this study is to present an improved numerical analysis of the dynamic instability of a cantilever microbeam immersed in an incompressible viscous fluid. The finite element method is used for solving the vibrational equation of the microbeam and the potential functions of the fluids in ...
متن کاملAnalytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method
The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...
متن کاملStabilization of Electrostatically Actuated Micro-pipe Conveying Fluid Using Parametric Excitation
This paper investigates the parametric excitation of a micro-pipe conveying fluid suspended between two symmetric electrodes. Electrostatically actuated micro-pipes may become unstable when the exciting voltage is greater than the pull-in value. It is demonstrated that the parametric excitation of a micro-pipe by periodic (ac) voltages may have a stabilizing effect and permit an increase of the...
متن کامل