2 Schur Ordering , Lorentz Curve , and Measures of Inequality 32
نویسندگان
چکیده
Discrete wavelet transformations have became indispensable analytical tools in data compression and data denoising. In this paper we give some empirical accounts of wavelet transformations and propose novel thresholding and wavelet selection methods. This is achieved via connections with measures of inequality, that have been used in economics for a long time. We compare our methods with standard thresholding and wavelet selection procedures.
منابع مشابه
A General Approach to Sparse Basis Selection: Majorization, Concavity, and Affine Scaling
Measures for sparse best–basis selection are analyzed and shown to fit into a general framework based on majorization, Schur-concavity, and concavity. This framework facilitates the analysis of algorithm performance and clarifies the relationships between existing proposed concentration measures useful for sparse basis selection. It also allows one to define new concentration measures, and seve...
متن کاملEla Upper Bounds on Certain Functionals Defined on Groups of Linear Operators∗
The problem of estimating certain functionals defined on a group of linear operators generating a group induced cone (GIC) ordering is studied. A result of Berman and Plemmons [Math. Inequal. Appl., 2(1):149–152, 1998] is extended from the sum function to Schur-convex functions. It is shown that the problem has a closed connection with both Schur type inequality and weak group majorization. Som...
متن کاملSchur Complements and Determinant Inequalities
This paper is focused on the applications of Schur complements to determinant inequalities. It presents a monotonic characterization of Schur complements in the L öwner partial ordering sense such that a new proof of the Hadamard-Fischer-Koteljanski inequality is obtained. Meanwhile, it presents matrix identities and determinant inequalities involving positive semidefinite matrices and extends ...
متن کاملOn a Schur complement inequality for the Hadamard product of certain totally nonnegative matrices
Under the entrywise dominance partial ordering, T.L. Markham and R.L. Smith obtained a Schur complement inequality for the Hadamard product of two tridiagonal totally nonnegative matrices. Applying the properties of the Hadamard core of totally nonnegative matrices, the Schur complement inequalities for the Hadamard product of totally nonnegative matrices is obtained, which extends those of T.L...
متن کاملEla on a Schur Complement Inequality for the Hadamard Product of Certain Totally Nonnegative Matrices
Under the entrywise dominance partial ordering, T.L. Markham and R.L. Smith obtained a Schur complement inequality for the Hadamard product of two tridiagonal totally nonnegative matrices. Applying the properties of the Hadamard core of totally nonnegative matrices, the Schur complement inequalities for the Hadamard product of totally nonnegative matrices is obtained, which extends those of T.L...
متن کامل