Regularity and mass conservation for discrete coagulation-fragmentation equations with diffusion
نویسندگان
چکیده
We present a new a-priori estimate for discrete coagulation-fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.
منابع مشابه
Fast Reaction Limit of the Discrete Diffusive Coagulation-fragmentation Equation
The local mass of weak solutions to the discrete diffusive coagulation-fragmentation equation is proved to converge, in the fast reaction limit, to the solution of a nonlinear diffusion equation, the coagulation and fragmentation rates enjoying a detailed balance condition.
متن کاملConvergence to equilibrium for the discrete coagulation-fragmentation equations with detailed balance
Under the condition of detailed balance and some additional restrictions on the size of the coefficients, we identify the equilibrium distribution to which solutions of the discrete coagulation-fragmentation system of equations converge for large times, thus showing that there is a critical mass which marks a change in the behavior of the solutions. This was previously known only for particular...
متن کاملDiscrete coagulation-fragmentation system with transport and diffusion
— We prove the existence of solutions to two infinite systems of equations obtained by adding a transport term to the classical discrete coagulation-fragmentation system and in a second case by adding transport and spacial diffusion. In both case, the particles have the same velocity as the fluid and in the second case the diffusion coefficients are equal. First a truncated system in size is so...
متن کاملStochastic coagulation and fragmentation: incommensurability and first passage times
We develop a fully stochastic theory for coagulation and fragmentation in a finite system with a maximum cluster size constraint. The process is modeled using a high-dimensional Master equation for the probabilities of cluster configurations. For certain realizations of total mass and maximum cluster sizes, we are able to find exact analytical results for the expected equilibrium cluster distri...
متن کاملNumerical Computation Of Multi-Component Two-Phase Flow in Cathode Of PEM Fuel Cells
A two-dimensional, unsteady, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) is studied numerically in the present study. The mixture is composed of oxygen, nitrogen, liquid water and water vapor. The governing equations are two species conservation, a single momentum equation for mobile mixture, liquid mass cons...
متن کامل