Investigations on Hydrotreating of Fischer Tropsch-Biowaxes for Generation of Bio-Products from Lignocellulosic Biomass
نویسندگان
چکیده
The present study describes the application of Fischer Tropsch biowaxes as a feedstock in a pilot-scale hydroprocessing unit at operating conditions very similar to industrial size hydrotreating plants of traditional refineries. The project focus on a future coprocessing of biowax/gasoil blends due to produce bio-products derived from lignocellulosic biomass: crack gases, naphtha, kerosene, diesel and a residual product. Hydro-processing plants operating at mild cracking conditions support the production of high amounts in middle distillates at reduced coke formation. Premium bio-diesel and bio-kerosene with excellent cold flow properties are the main objective of the investigations. Various test runs with different hydrotreating catalysts have been conducted due to determine the influence of waxy feedstock on catalyst behavior and product distribution. Depending on the catalyst selected, the fixed bed reactor streamed by hydrogen operates under specified cracking condition defined by the following parameters: reactor temperature, hydrogen pressure and weight hourly space velocity (WHSV). Test runs with selected catalysts isodewaxing (IDW), hydro-desulphurization (HDS) and the catalytic deparaffination (CDP) catalyst have been executed at constant process conditions in order to compare the product spectrum and properties of product groups. Highest amounts of bio-diesel and bio-kerosene with excellent cold flow properties can be obtained with the IDW catalyst. This NiWbased catalyst with special additives generates cleaved and reshaped molecular fragments via skeletal isomerisation increasing the isoparaffin content of naphtha and middle distillates. Further investigations with this catalyst type have been executed due to determine the catalyst aging effect in a separate long term test run. The loss of cracking severity during operation of the catalyst can be observed by a steady decline in conversion. Unsaturated hydrocarbons such as olefins and diolefines in the bio-feedstock support the formation of a coke layer on the catalyst surface resulting in reinforced deactivation. As the consequence naphtha and finally the crack gases and the kerosene fraction are shifted to higher molecular fragments increasing the diesel and residue yield. Physicochemical properties of the product groups obtained during the test run vary and especially the cold flow www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 4; April 2012 Published by Canadian Center of Science and Education 29 properties from the diesel and kerosene fraction degrade significant. Balancing the conversion decline of the catalyst in operation can be realized by increasing the reactor temperature and the hydrogen pressure, but the effect is time limited.
منابع مشابه
Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Lab...
متن کاملDetermination of the Product Selectivity Model from the Fischer Tropsch Synthesis in a Fixed Bed Reactor
The Fischer-Tropsch synthesis is a catalytic process that can produce a fuel similar to fossil fuels by using primary sources such as agricultural waste and carbon sources that can convert into synthesis gas by superheated steam. All fuel derivatives can be supplied through the Fischer-Tropsch reaction. The synthesis produces a variety of hydrocarbons via parallel and sequential reactions. Howe...
متن کاملInvestigation of Products Distribution In Fischer-Tropsch Synthesis By Nano-sized Iron-based Catalyst
Nano-sized iron-based catalyst was prepared by the micro-emulsion method. The composition of the final nano-sized iron catalyst, in term of the atomic ratio contains: 100Fe/4Cu/2Ce. Experimental techniques of XRD, BET, TEM and TPR were used to study the phase, structure and morphology of the catalyst. Fischer-Tropsch Synthesis (FTS) reaction test was performed in a fixed bed reactor at pressure...
متن کاملBiorefineries: Current activities and future developments
This paper reviews the current refuel valorization facilities as well as the future importance of biorefineries. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. Biorefineries combine the necessary technologies of the biorenewable raw materials with those of chemical intermediates and final products. Char...
متن کاملA review of Fischer-Tropsch synthesis on the cobalt based catalysts
Fischer-Tropsch synthesis is a promising route for production of light olefins via CO hydrogenation over transition metals. Co is one of the most active metals for Fischer-Tropsch synthesis. Some different variables such as preparation parameters and operational factors can strongly affect the selectivity of Fischer-Tropsch synthesis toward the special products. In the case of preparat...
متن کامل