Constructing Data-Driven Optimal Representations for Iterative Pairwise Non-rigid Registration
نویسندگان
چکیده
Non-rigid registration of a pair of images depends on the generation of a dense deformation field across one of the images. Such deformation fields can be represented by the deformation of a set of knotpoints, interpolated to produce the continuous deformation field. This paper addresses the question of how best to choose the knotpoints of such a representation based on all of the available image information. These knotpoints are not landmarks, they can be positioned anywhere in the images, and do not necessarily correspond to any image feature. We use an iterative, data-driven algorithm for the selection of knotpoints, and a novel spline that interpolates smoothly between knotpoints. The algorithm produces a low-dimensional representation of the deformation field that can be successively refined in a multi-resolution manner. We demonstrate the properties of the algorithm on sets of 2D images and discuss the extension of the algorithm to 3D data.
منابع مشابه
Groupwise Non-Rigid Registration of Medical Images: The Minimum Description Length Approach
The aim of non-rigid registration as applied to a group of images is to find a ‘meaningful’ dense spatial correspondence across the set. There are many methods available for finding such a correspondence given a pair of images, but viewing the groupwise case as just successive pairwise is rather naı̈ve. The principled non-rigid registration of groups of images hence requires a fully groupwise ob...
متن کاملبهبود سرعت "انطباق مبتنی بر روش برش گراف" جهت انطباق غیر صلب تصاویر تشدید مغناطیسی مغز
Image processing methods, which can visualize objects inside the human body, are of special interests. In clinical diagnosis using medical images, integration of useful data from separate images is often desired. The images have to be geometrically aligned for better observation. The procedure of mapping points from the reference image to corresponding points in the floating image is called Ima...
متن کاملApproximated Curvature Penalty in Non-rigid Registration Using Pairwise MRFs
Labeling of discrete Markov Random Fields (MRFs) has become an attractive approach for solving the problem of non-rigid image registration. Here, regularization plays an important role in order to obtain smooth deformations for the inherent ill-posed problem. Smoothness is achieved by penalizing the derivatives of the displacement field. However, efficient optimization strategies (based on iter...
متن کاملData-Driven Evaluation of Non-Rigid Registration via Appearance Modelling
This paper presents a generic method for assessing the quality of non-rigid registration (NRR) algorithms, that does not depend on the existence of any ground truth, but depends solely on the data itself. The data is taken to be a set of images. The output of any non-rigid registration of such a set of images is a dense correspondence across the whole set. Given such a dense correspondence, it ...
متن کاملTemporal Groupwise Registration for Motion Modeling
We propose a novel method for the registration of time-resolved image sequences, called Spatio-Temporal groupwise non-rigid Registration using free-form deforMations (STORM). It is a groupwise registration method, with a group of images being considered simultaneously, in order to prevent bias introduction. This is different from pairwise registration methods where only two images are registere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003