Spatial Chemical Stimulation Control in Microenvironment by Microfluidic Probe Integrated Device for Cell-Based Assay

نویسندگان

  • Masayuki Horayama
  • Kenta Shinha
  • Kazuya Kabayama
  • Teruo Fujii
  • Hiroshi Kimura
چکیده

Cell-cell interactions play an important role in the development and function of multicellular organisms. To investigate these interactions in detail, it is necessary to evaluate the behavior of a cell population when the minimum number of cells in the population is stimulated by some chemical factors. We propose a microfluidic device integrated with microfluidic probe (MFP) functionality; this device is capable of imparting a chemical stimulus to cells within a microenvironment, for cell-based assays. The device contains MFP channels at the walls of the cell culture microchannels, and it can control a localized chemical stimulation area at the scale of a single cell to a few cells using MFP fluid control in a microspace. The results of a finite element method-based simulation indicated that it is possible to control the chemical stimulation area at the scale of a single cell to a few cells by optimizing the MFP channel apex width and the flow ratio. In addition, localized cell staining was demonstrated successfully using a spatial chemical stimulus. We confirmed the device functionality as a novel cell-based assay tool. We succeeded in performing localized cell collection using this method, which suggested that the single cell analysis of a cell monolayer that is subjected to a specific chemical stimulus is possible. The method proposed in this paper can contribute significantly to the fields of cell biology and drug development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A microfluidic biochip for locally confined stimulation of cells within an epithelial monolayer† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra11943g

A key factor determining the fate of individual cells within an epithelium is the unique microenvironment that surrounds each cell. It regulates location-dependent differentiation into specific cellular sub-types, but, on the other hand, a disturbed microenvironment can promote malignant transformation of epithelial cells leading to cancer formation. Here, we present a tool based on a microflui...

متن کامل

Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos.

Interference of the Hedgehog (Hh) signaling pathway by cyclopamine leads to abnormal embryonic development. We monitor this dynamical drug effect in zebrafish embryos with highly precise microenvironment control using an integrated microfluidic device. This chip-based platform, which is programmable and automated, greatly facilitates the accuracy and reproducibility of the in vivo assays.

متن کامل

An Integrated Microfluidic Probe for Concentration-enhanced Selective Single Cell Kinase Activity Measurement

We present an integrated microfluidic probe that captures the contents of selected single cells from a cell population adherent on a standard tissue culture platform and directly measures specific protein kinase activities in the captured single cell lysate. A kinetic fluorimetric kinase assay in a small integrated chamber isolated by micro-valves and an end-point concentration-enhanced mobilit...

متن کامل

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

Biosensor microprobes with integrated microfluidic channels for bi-directional neurochemical interaction.

This paper reports on silicon-based microprobes, 8 mm long and 250 µm × 250 µm cross-section, comprising four recessed biosensor microelectrodes (50 µm × 150 µm) per probe shank coated with an enzymatic layer for the selective detection of choline at multiple sites in brain tissue. Integrated in the same probe shank are up to two microfluidic channels for controlled local liquid delivery at a d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016