Big Social Data and GIS: Visualize Predictive Crime

نویسندگان

  • Anthony Corso
  • Kareem Alsudais
  • Brian Hilton
چکیده

Social media is a desirable Big Data source used to examine the relationship between crime and social behavior. Observation of this connection is enriched within a geographic information system (GIS) rooted in environmental criminology theory, and produces several different results to substantiate such a claim. This paper presents the construction and implementation of a GIS artifact producing visualization and statistical outcomes to develop evidence that supports predictive crime analysis. An information system research prototype guides inquiry and uses crime as the dependent variable and a social media tweet corpus, operationalized via natural language processing, as the independent variable. This inescapable realization of social media as a predictive crime variable is prudent; researchers and practitioners will better appreciate its capability. Inclusive visual and statistical results are novel, represent state-of-the-art predictive analysis, increase the baseline R value by 7.26%, and support future predictive crime-based research when frontrun with real-time social media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GIS, Big Data, and a Tweet Corpus Operationalized via Natural Language Processing

Whereas ad hoc single domain Big Data inquiry is successful, observation of a multi-domain GIS artifact needs consideration. A GIS solution for multi-domain data analysis must provide visualization and overt statistical analysis tools, e.g., regression capabilities of constituent data streams, in order to enable largescale dataset processing and evaluation. Such guidelines direct inquiry and cr...

متن کامل

Crime Sensing with Big Data: the Affordances and Limitations of Using Open-source Communications to Estimate Crime Patterns

This paper critically examines the affordances and limitations of big data for the study of crime and disorder. We hypothesize that disorder-related posts on Twitter are associated with actual police crime rates. Our results provide evidence that naturally occurring social media data may provide an alternative information source on the crime problem. This paper adds to the emerging field of com...

متن کامل

An Analysis on the Appropriateness and Effectiveness of CCTV Location for Crime Prevention

This study aims to investigate the possibility of crime prevention through CCTV by analyzing the appropriateness of the CCTV location, whether it is installed in the hotspot of crime-prone areas, and exploring the crime prevention effect and transition effect. The real crime and CCTV locations of case city were converted into the spatial data by using GIS. The data was analyzed by hotspot analy...

متن کامل

Predictive Modeling of Human Behavior: Supervised Learning from Telecom Metadata

Big data, specifically Telecom Metadata, opens new opportunities for human behavior understanding, applying machine learning and big data processing computational methods combined with interdisciplinary knowledge of human behavior. In this thesis new methods are developed for human behavior predictive modeling based on anonymized telecom metadata on individual level and on large scale group lev...

متن کامل

Predicting Localized, Fine-Grained Crime Types using Twitter

Online social media is a massive information resource in the Big data era. IBM estimates that we generate 2.5 quintillion bytes of data each day, a large part of which is data generated through online social media. Twitter is one of the most popular forms of social media used by more than 100 million users, with more than 300 million messages being exchanged each day. Thus, tweets serve as a ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016