Preparation of zinc hydroxystannate-decorated graphene oxide nanohybrids and their synergistic reinforcement on reducing fire hazards of flexible poly (vinyl chloride)
نویسندگان
چکیده
A novel flame retardant, zinc hydroxystannate-decorated graphene oxide (ZHS/GO) nanohybrid, was successfully prepared and well characterized. Herein, the ZHS nanoparticles could not only enhance the flame retardancy of GO with the synergistic flame-retardant effect of ZHS but also prevent the restack of GO to improve the mechanical properties of poly (vinyl chloride) (PVC) matrix. The structure characterization showed ZHS nanoparticles were bonded onto the surface of GO nanosheets and the ZHS nanoparticles were well distributed on the surface of GO. Subsequently, resulting ZHS/GO was introduced into flexible PVC and fire hazards and mechanical properties of PVC nanocomposites were investigated. Compared to neat PVC, thermogravimetric analysis exhibited that the addition of ZHS/GO into PVC matrix led to an improvement of the charring amount and thermal stability of char residue. Moreover, the incorporation of 5 wt.% ZHS/GO imparted excellent flame retardancy to flexible PVC, as shown by increased limiting oxygen index, reduced peak heat release rate, and total heat release tested by an oxygen index meter and a cone calorimeter, respectively. In addition, the addition of ZHS/GO nanohybrids decreased the smoke products and increased the tensile strength of PVC. Above-excellent flame-retardant properties are generally attributed to the synergistic effect of GO and ZHS, containing good dispersion of ZHS/GO in PVC matrix, the physical barrier of GO, and the catalytic char function of ZHS.
منابع مشابه
Assessment of antioxidant and antibacterial activities of Zinc Oxide nanoparticles, Graphene and Graphene decorated by Zinc Oxide nanoparticles
Zinc Oxide nanoparticles (ZnO-NPs) and graphene carbon material, due to lower drug resistance, can replace antibiotics, and by decorating of graphene with Zn-NPs, their properties can be greatly improved. The purpose of this study was to evaluate the antioxidant and antibacterial effects of ZnO-NPs biosynthesized using Crocus Sativus petal extract, graphene and graphene decorated by ZnO-NPs bio...
متن کاملEffect of some additives on degradation of poly (vinyl chloride- co- vinyl
The thermal decomposition of 86 % vinyl chloride 14 % vinyl acetate copolymer wasstudied by the conductometry technique in the presence of nitrogen. The kinetics of stability andthermal degradation of vinyl chloride- co- vinyl acetate (PVC- co- PVAc) copolymer withcopper, copper oxide and tricalcium dicitrate (st) were investigated at various temperatures (150-180 oC ) in solution. The rate coe...
متن کاملFabrication of Graphene/MoS2 Nanocomposite for Flexible Energy Storage
In the present work,MoS2 decorated graphene nanocomposite powders were synthesized by laser scribing method.Theobtainedflexible light-scribed graphene/MoS2composites are very suitableas micro-supercapacitors and thus their performance was evaluated at different concentrations.The effect of laser scribing process to reducegraphene oxide (GO) was investigated. The GO/MoS2composite wassynthesized ...
متن کاملTitanate Nanotubes Decorated Graphene Oxide Nanocomposites: Preparation, Flame Retardancy, and Photodegradation
Most polymers exhibit high flammability and poor degradability, which restrict their applications and causes serious environmental problem like "white pollution." Thus, titanate nanotubes (TNTs) were adopted to decorate graphene oxide (GO) by a facile solution method to afford TNTs/GO nanocomposites with potential in improving the flame retardancy and photodegradability of flexible polyvinyl ch...
متن کاملA general strategy for the preparation of carbon nanotubes and graphene oxide decorated with PdO nanoparticles in water.
The preparation of carbon nanotube (CNT)/PdO nanoparticles and graphene oxide (GO)/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step "green" synthetic approach in aqueous Pd(NO(3))(2) solution under ambient conditions without adding any additional chemicals. The production of PdO is confirme...
متن کامل