Bistability in the chemical master equation for dual phosphorylation cycles.

نویسندگان

  • Armando Bazzani
  • Gastone C Castellani
  • Enrico Giampieri
  • Daniel Remondini
  • Leon N Cooper
چکیده

Dual phospho/dephosphorylation cycles, as well as covalent enzymatic-catalyzed modifications of substrates are widely diffused within cellular systems and are crucial for the control of complex responses such as learning, memory, and cellular fate determination. Despite the large body of deterministic studies and the increasing work aimed at elucidating the effect of noise in such systems, some aspects remain unclear. Here we study the stationary distribution provided by the two-dimensional chemical master equation for a well-known model of a two step phospho/dephosphorylation cycle using the quasi-steady state approximation of enzymatic kinetics. Our aim is to analyze the role of fluctuations and the molecules distribution properties in the transition to a bistable regime. When detailed balance conditions are satisfied it is possible to compute equilibrium distributions in a closed and explicit form. When detailed balance is not satisfied, the stationary non-equilibrium state is strongly influenced by the chemical fluxes. In the last case, we show how the external field derived from the generation and recombination transition rates, can be decomposed by the Helmholtz theorem, into a conservative and a rotational (irreversible) part. Moreover, this decomposition allows to compute the stationary distribution via a perturbative approach. For a finite number of molecules there exists diffusion dynamics in a macroscopic region of the state space where a relevant transition rate between the two critical points is observed. Further, the stationary distribution function can be approximated by the solution of a Fokker-Planck equation. We illustrate the theoretical results using several numerical simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonequilibrium phase transition in a mesoscoipic biochemical system: From stochastic to nonlinear dynamics and beyond

A rigorous mathematical framework for analyzing the chemical master equation (CME) with bistability, based on the theory of large deviation, is proposed. Using a simple phosphorylation-dephosphorylation cycle with feedback as an example, we show that a nonequilibrium steady-state (NESS) phase transition occurs in the system which has all the characteristics of classic equilibrium phase transiti...

متن کامل

The Chemical Master Equation Approach to Nonequilibrium Steady-State of Open Biochemical Systems: Linear Single-Molecule Enzyme Kinetics and Nonlinear Biochemical Reaction Networks

We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme...

متن کامل

Phosphorylation potential and chemical fluxes govern the biological performance of multiple PdP cycles

Fission yeast G2/M transition is regulated by a biochemical reaction networks which contains four components: Cdc13, Cdc2, Wee1, and Cdc25. This circuit is characterized by the ultrasensitive responses of Wee1 or Cdc25 to Cdc13/Cdc2 activity, and the bistability of Cdc2 activation. Previous work has shown that this bistability is governed by phosphorylation energy. In this article, we developed...

متن کامل

Microscopic Simulation of Chemical Bistability in Homogeneous Systems

Microscopic simulation is used to clarify the status of stochastic theories of homogeneous chemical systems operating in the multiple steady state region. The results demonstrate the failure of the Langevin approach, but show excellent agreement with the master equation formulation.

متن کامل

Catalytic constants enable the emergence of bistability in dual phosphorylation.

Dual phosphorylation of proteins is a principal component of intracellular signalling. Bistability is considered an important property of such systems and its origin is not yet completely understood. Theoretical studies have established parameter values for multistationarity and bistability for many types of proteins. However, up to now no formal criterion linking multistationarity and bistabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 136 23  شماره 

صفحات  -

تاریخ انتشار 2012