Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean.

نویسندگان

  • Yen-Ting Hwang
  • Dargan M W Frierson
چکیده

The double-Intertropical Convergence Zone (ITCZ) problem, in which excessive precipitation is produced in the Southern Hemisphere tropics, which resembles a Southern Hemisphere counterpart to the strong Northern Hemisphere ITCZ, is perhaps the most significant and most persistent bias of global climate models. In this study, we look to the extratropics for possible causes of the double-ITCZ problem by performing a global energetic analysis with historical simulations from a suite of global climate models and comparing with satellite observations of the Earth's energy budget. Our results show that models with more energy flux into the Southern Hemisphere atmosphere (at the top of the atmosphere and at the surface) tend to have a stronger double-ITCZ bias, consistent with recent theoretical studies that suggest that the ITCZ is drawn toward heating even outside the tropics. In particular, we find that cloud biases over the Southern Ocean explain most of the model-to-model differences in the amount of excessive precipitation in Southern Hemisphere tropics, and are suggested to be responsible for this aspect of the double-ITCZ problem in most global climate models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A link between the double intertropical convergence zone problem and cloud biases over the Southern Ocean

The double intertropical convergence zone (ITCZ) problem, in which excessive precipitation is produced in the Southern Hemisphere tropics that resembles a Southern Hemisphere counterpart to the strong Northern Hemisphere ITCZ, is perhaps the most significant and most persistent bias of global climate models. In this study, we look to the extratropics for possible causes of the double ITCZ probl...

متن کامل

Tropical Biases in Cmip5 Multi-model Ensemble: the Excessive Equatorial Pacific Cold Tongue and Double Itcz Problems

Errors of coupled general circulation models (CGCMs) limit their utility for climate prediction and projection. Origins of and feedback for tropical biases are investigated in the historical climate simulations of eighteen CGCMs from the Coupled Model Intercomparison Project phase 5 (CMIP5), together with the available Atmospheric Model Intercomparison Project (AMIP) simulations. Based on an in...

متن کامل

The Intertropical Convergence Zone in the South Atlantic and the Equatorial Cold Tongue

Recent observations from the QuikSCAT and Tropical Rainfall Measuring Mission satellites, as well as a longer record of Special Sensor Microwave Imager winds are used to investigate the existence and dynamics of a Southern Hemisphere partner to the intertropical convergence zone in the tropical Atlantic Ocean. The southern intertropical convergence zone extends eastward from the coast of Brazil...

متن کامل

A Regional Ocean–Atmosphere Model for Eastern Pacific Climate: Toward Reducing Tropical Biases*

The tropical Pacific Ocean is a climatically important region, home to El Niño and the Southern Oscillation. The simulation of its climate remains a challenge for global coupled ocean–atmosphere models, which suffer large biases especially in reproducing the observed meridional asymmetry across the equator in sea surface temperature (SST) and rainfall. A basin ocean general circulation model is...

متن کامل

Process-level improvements in CMIP5 models and their impact on tropical variability, the Southern Ocean, and monsoons

The performance of updated versions of the four earth system models (ESMs) CNRM, EC-Earth, HadGEM, and MPI-ESM is assessed in comparison to their predecessor versions used in Phase 5 of the Coupled Model Intercomparison Project. The Earth System Model Evaluation Tool (ESMValTool) is applied to evaluate selected climate phenomena in the models against observations. This is the first systematic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 13  شماره 

صفحات  -

تاریخ انتشار 2013