Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers.
نویسندگان
چکیده
Canonical Wnt/β-catenin signaling plays an important role in myogenic differentiation, but its physiological role in muscle fibers remains elusive. Here, we studied activation of Wnt/β-catenin signaling in adult muscle fibers and muscle stem cells in an Axin2 reporter mouse. Axin2 is a negative regulator and a target of Wnt/β-catenin signaling. In adult muscle fibers, Wnt/β-catenin signaling is only detectable in a subset of fast fibers that have a significantly smaller diameter than other fast fibers. In the same fibers, immunofluorescence staining for YAP/Taz and Tead1 was detected. Wnt/β-catenin signaling was absent in quiescent and activated satellite cells. Upon injury, Wnt/β-catenin signaling was detected in muscle fibers with centrally located nuclei. During differentiation of myoblasts expression of Axin2, but not of Axin1, increased together with Tead1 target gene expression. Furthermore, absence of Axin1 and Axin2 interfered with myoblast proliferation and myotube formation, respectively. Treatment with the canonical Wnt3a ligand also inhibited myotube formation. Wnt3a activated TOPflash and Tead1 reporter activity, whereas neither reporter was activated in the presence of Dkk1, an inhibitor of canonical Wnt signaling. We propose that Axin2-dependent Wnt/β-catenin signaling is involved in myotube formation and, together with YAP/Taz/Tead1, associated with reduced muscle fiber diameter of a subset of fast fibers.
منابع مشابه
BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling
Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI) is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the e...
متن کاملYAP/TAZ Incorporation in the β-Catenin Destruction Complex Orchestrates the Wnt Response
The Hippo transducers YAP/TAZ have been shown to play positive, as well as negative, roles in Wnt signaling, but the underlying mechanisms remain unclear. Here, we provide biochemical, functional, and genetic evidence that YAP and TAZ are integral components of the β-catenin destruction complex that serves as cytoplasmic sink for YAP/TAZ. In Wnt-ON cells, YAP/TAZ are physically dislodged from t...
متن کاملAlternative Wnt Signaling Activates YAP/TAZ
The transcriptional co-activators YAP and TAZ are key regulators of organ size and tissue homeostasis, and their dysregulation contributes to human cancer. Here, we discover YAP/TAZ as bona fide downstream effectors of the alternative Wnt signaling pathway. Wnt5a/b and Wnt3a induce YAP/TAZ activation independent of canonical Wnt/β-catenin signaling. Mechanistically, we delineate the "alternativ...
متن کاملYAP/TAZ Join the Play with β-catenin to Orchestrate Wnt Signaling
For the purpose of studying Wnt signaling, the intestinal epithelium has been the most relevant biological tissue for its differential topology expression of Wnt signaling: active in all crypt cells (helping in proliferation, stemness, regeneration, and tissue homeostasis) and inactive in the villi cells. Interestingly though, YAP/TAZ regulation through Wnt signaling has been more controversial...
متن کاملInteracting network of Hippo, Wnt/β-catenin and Notch signaling represses liver tumor formation
Acquiring a selective growth advantage by breaking the proliferation barrier established by gatekeeper genes is a centrally important event in tumor formation. Removal of the mammalian Hippo kinase Mst1 and Mst2 in hepatocytes leads to rapid hepatocellular carcinoma (HCC) formation, indicating that the Hippo signaling pathway is a critical gatekeeper that restrains abnormal growth in hepatocyte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 143 17 شماره
صفحات -
تاریخ انتشار 2016