SEMIFAR models - a semiparametric framework for modelling trends, long-range dependence and nonstationarity

نویسنده

  • J. Beran
چکیده

Time series in many areas of application often display local or global trends. Typical models that provide statistical \explanations" of such trends are, for example, polynomial regression, smooth bounded trends that are estimated nonparametrically, and di erence-stationary processes such as, for instance, integrated ARIMA processes. In addition, there is a fast growing literature on stationary processes with long memory which generate spurious local trends. Visual distinction between the large variety of possible models, and in particular between deteministic, stochastic and spurious trends, can be very di cult. Also, for some time series, several \trend generating" mechanisms may occur simulateneously. In this paper, a class of semiparametric fractional autoregressive models (SEMIFAR) is proposed that includes deterministic trends, di erence stationarity and stationarity with shortand long-range dependence. Parameters characterizing stochastic dependence and stochastic trends, including a fractional and an integer di erencing parameter, can be estimated by maximum likelihood. Deterministic trends are estimated by kernel smoothing. In combination with automatic model and bandwidth selection, the proposed method allows for exible modelling of time series and helps the data analyst to decide whether the observed process contains a stationary shortor long-memory component, a di erence stationary component, and/or a deterministic trend component. Data examples from various elds of application illustrate the method. Finite sample behaviour is studied in a small simulation study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling financial time series with SEMIFAR-GARCH model

A class of semiparametric fractional autoregressive GARCH models (SEMIFARGARCH), which includes deterministic trends, difference stationarity and stationarity with shortand long-range dependence, and heteroskedastic model errors, is very powerful for modelling financial time series. This paper discusses the model fitting, including an efficient algorithm and parameter estimation of GARCH error ...

متن کامل

Recent Developments in Non- and Semiparametric Regression with Fractional Time Series Errors

This paper summarizes recent developments in nonand semiparametric regression with stationary fractional time series errors, where the error process may be short-range, long-range dependent or antipersistent. The trend function in this model is estimated nonparametrically, while the dependence structure of the error process is estimated by approximate maximum likelihood. Asymptotic properties o...

متن کامل

Semiparametric Model Selection in Panel Data Models with Deterministic Trends and Cross-Sectional Dependence Jia Chen and Jiti Gao Semiparametric Model Selection in Panel Data Models with Deterministic Trends and Cross-Sectional Dependence

In this paper, we consider a model selection issue in semiparametric panel data models with fixed effects. The modelling framework under investigation can accommodate both nonlinear deterministic trends and cross-sectional dependence. And we consider the so-called “large panels” where both the time series and cross sectional sizes are very large. A penalised profile least squares method with fi...

متن کامل

Data-driven estimation of semiparametric fractional autoregressive models

In this paper data-driven algorithms for tting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based on the iterative plug-in idea (Gasser et al., 1991) is used. Asymptotic properties of the proposed algor...

متن کامل

Can GARCH Models Capture the Long-Range Dependence in Financial Market Volatility?∗

This paper investigates if component GARCH models introduced by Engle and Lee (1999) and Ding and Granger (1996) can capture the long-range dependence observed in measures of time-series volatility. Long-range dependence is assessed through the sample autocorrelations, two popular semiparametric estimators of the long-memory parameter, and the parametric fractionally integrated GARCH (FIGARCH) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000