Angular dose dependency of MatriXX TM and its calibration

نویسندگان

  • Luciant D. Wolfsberger
  • Matthew Wagar
  • Paige Nitsch
  • Mandar S. Bhagwat
  • Piotr Zygmanski
چکیده

One of the applications of MatriXX (IBA Dosimetry) is experimental verification of dose for IMRT, VMAT, and tomotherapy. For cumulative plan verification, dose is delivered for all the treatment gantry angles to a stationary detector. Experimental calibration of MatriXX detector recommended by the manufacturer involves only AP calibration fields and does not address angular dependency of MatriXX. Angular dependency may introduce dose bias in cumulative plan verification if not corrected. For this reason, we characterized angular dependency of MatriXX and developed a method for its calibration. We found relatively large discrepancies in responses to posterior vs. anterior fields for four MatriXX (Evolution series) detectors (up to 11%), and relatively large variability of responses as a function of gantry angle in the gantry angle ranges of 91 degrees-110 degrees and 269 degrees-260 degrees. With our calibration method, the bias due to angular dependency is effectively removed in experimental verification of IMRT and VMAT plans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method

Background: The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area.Objective: A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of meas...

متن کامل

Angular dependence correction of MatriXX and its application to composite dose verification

We measured the angular dependence of central and off-axis detectors in a 2D ionization chamber array, MatriXX, and applied correction factors (CFs) to improve the accuracy of composite dose verification of IMRT and VMAT. The MatriXX doses were measured with a 10° step for gantry angles (θ) of 0°-180°, and a 1° step for lateral angles of 90°-110° in a phantom, with a 30 × 10 cm2 field for 6 MV ...

متن کامل

Quality assurance of TomoDirect treatment plans using I’mRT MatriXX

PURPOSE To evaluate the performance of 2D-array I'mRT MatriXX for dose verification of TomoDirect treatment plans. METHODS In this study, a 2D-array ion chamber device - the I'mRT MatriXX and Multicube Phantom from IBA - was used for dose verification of different TomoDirect plans. Pre-treatment megavoltage computed tomography (MVCT) was performed on the phantom setup for position correction....

متن کامل

Calculating CR-39 Response to Radon in Water Using Monte Carlo Simulation

Introduction CR-39 detectors are widely used for Radon and progeny measurement in the air. In this paper, using the Monte Carlo simulation, the possibility of using the CR-39 for direct measurement of Radon and progeny in water is investigated. Materials and Methods Assuming the random position and angle of alpha particle emitted by Radon and progeny, alpha energy and angular spectrum that arri...

متن کامل

Report on Use of a Methodology for Commissioning and Quality Assurance of a VMAT System

INTRODUCTION Results of use of methodology for VMAT commissioning and quality assurance, utilizing both control point tests and dosimetric measurements are presented. METHODS AND MATERIALS A generalizable, phantom measurement approach is used to characterize the accuracy of the measurement system. Correction for angular response of the measurement system and inclusion of couch structures are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2010