Synchronized renal tubular cell death involves ferroptosis.

نویسندگان

  • Andreas Linkermann
  • Rachid Skouta
  • Nina Himmerkus
  • Shrikant R Mulay
  • Christin Dewitz
  • Federica De Zen
  • Agnes Prokai
  • Gabriele Zuchtriegel
  • Fritz Krombach
  • Patrick-Simon Welz
  • Ricardo Weinlich
  • Tom Vanden Berghe
  • Peter Vandenabeele
  • Manolis Pasparakis
  • Markus Bleich
  • Joel M Weinberg
  • Christoph A Reichel
  • Jan Hinrich Bräsen
  • Ulrich Kunzendorf
  • Hans-Joachim Anders
  • Brent R Stockwell
  • Douglas R Green
  • Stefan Krautwald
چکیده

Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia-reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonapoptotic cell death in acute kidney injury and transplantation.

Acute tubular necrosis causes a loss of renal function, which clinically presents as acute kidney failure (AKI). The biochemical signaling pathways that trigger necrosis have been investigated in detail over the past 5 years. It is now clear that necrosis (regulated necrosis, RN) represents a genetically driven process that contributes to the pathophysiology of AKI. RN pathways such as necropto...

متن کامل

Ferroptosis, a new form of cell death, and its relationships with tumourous diseases

Ferroptosis is a newly discovered type of cell death that differs from traditional apoptosis and necrosis and results from iron-dependent lipid peroxide accumulation. Ferroptotic cell death is characterized by cytological changes, including cell volume shrinkage and increased mitochondrial membrane density. Ferroptosis can be induced by two classes of small-molecule substances known as class 1 ...

متن کامل

Regulation of Ferroptotic Cancer Cell Death by GPX4

Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover t...

متن کامل

BID links ferroptosis to mitochondrial cell death pathways

Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc- system or inhibition of glutathione peroxidase 4 (Gpx4) to an increas...

متن کامل

Ferroptosis: a novel cell death form will be a promising therapy target for diseases.

Recently, Friedmann Angeli et al. [1] reported that the loss of ferroptosis regulation enzyme glutathione peroxidase 4 (GPX4)will cause an overwhelming ferroptosis of renal cells, which eventually induces renal failure. Yet, liproxstatin-1, a novel potent ferroptosis inhibitor, is able to alleviate tissue injury of ischemia/reperfusion-induced renal injury. This study smartly expanded the resea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 47  شماره 

صفحات  -

تاریخ انتشار 2014