Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China
نویسندگان
چکیده
Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by the underlying soil when the vegetation coverage is low. Both of these conditions decrease the estimation accuracy of forest biomass. A new optical and microwave integrated vegetation index (VI) was proposed based on observations from both field experiments and satellite (Landsat 8 Operational Land Imager (OLI) and RADARSAT-2) data. According to the difference in interaction between the multispectral reflectance and microwave backscattering signatures with biomass, the combined VI (COVI) was designed using the weighted optical optimized soil-adjusted vegetation index (OSAVI) and microwave horizontally transmitted and vertically received signal (HV) to overcome the disadvantages of both data types. The performance of the COVI was evaluated by comparison with those of the sole optical data, Synthetic Aperture Radar (SAR) data, and the simple combination of independent optical and SAR variables. The most accurate performance was obtained by the models based on the COVI and optical and microwave optimal variables excluding OSAVI and HV, in combination with a random forest algorithm and the largest number of reference samples. The results also revealed that the predictive accuracy depended highly on the statistical method and the number of sample units. The validation indicated that this integrated method of determining the new VI is a good synergistic way to combine both optical and microwave information for the accurate estimation of forest biomass.
منابع مشابه
Soil moisture limitations on monitoring boreal forest regrowth using spaceborne L-band SAR data
A study was carried out to investigate the utility of L-band SAR data for estimating aboveground biomass in sites with low levels of vegetation regrowth. Data to estimate biomass were collected from 59 sites located in fire-disturbed black spruce forests in interior Alaska. PALSAR L-band data (HH and HV polarizations) collected on two dates in the summer/fall of 2007 and one date in the summer ...
متن کاملEstimation of Forest Biomass Patterns across Northeast China Based on Allometric Scale Relationship
This study develops a modeling framework for utilizing the large footprint LiDAR waveform data from the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and Land Elevation Satellite (ICESat), Moderate Resolution Imaging Spectro-Radiometer (MODIS) imagery, meteorological data, and forest measurements for monitoring stocks of total biomass (including aboveground biomass and roo...
متن کاملEstimation of Tropical Forest Height and Aboveground Biomass from Dual-band InSAR measurements in Peruvian Amazon
In July 2009, Earthdata Inc. acquired Synthetic Aperture Radar (SAR) data over a lager part of the Peruvian lowland Amazon and mountain forests (more than 5000 km 2 ). The project was designed to provide high spatial resolution imagery to the science community to estimate and map forest aboveground biomass and to assess the capability of the measurements for REDD baseline applications. GeoSAR c...
متن کاملFunctional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland
The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and comm...
متن کاملEstimating Forest Aboveground Biomass by Combining ALOS PALSAR and WorldView-2 Data: A Case Study at Purple Mountain National Park, Nanjing, China
Enhanced methods are required for mapping the forest aboveground biomass (AGB) over a large area in Chinese forests. This study attempted to develop an improved approach to retrieving biomass by combining PALSAR (Phased Array type L-band Synthetic Aperture Radar) and WorldView-2 data. A total of 33 variables with potential correlations with forest biomass were extracted from the above data. How...
متن کامل