Lanthanum silicate coated magnetic microspheres as a promising affinity material for phosphopeptide enrichment and identification.

نویسندگان

  • Gong Cheng
  • Yan-Lin Liu
  • Ji-Lin Zhang
  • De-Hui Sun
  • Jia-Zuan Ni
چکیده

Novel Fe(3)O(4)@La(x)Si(y)O(5) affinity microspheres consisting of a superparamagnetic Fe(3)O(4) core and an amorphous lanthanum silicate shell have been synthesized. The core-shell-structured Fe(3)O(4)@La(x)Si(y)O(5) microspheres, with a mean size of ca. 480 nm, had rough lanthanum silicate surfaces and displayed relatively strong magnetism (47.2 emu g(-1)). This novel affinity material can be used for selective capture, rapid magnetic separation, and part dephosphorylation (which plays an important role in identifying phosphopeptides in MS) of the phosphopeptides in a peptide mixture. Its ability to selectively trap and magnetically isolate as well as label the phosphopeptides was evaluated using a standard phosphorylated protein (β-casein) and a real sample (human serum). Phosphopeptides and their corresponding label ions were detected for concentrations of β-casein as low as 1 × 10(-9) M and in mixtures of β-casein and BSA with molar ratios as low as 1:50. In addition, this affinity material, with its labeling properties, is superior to commercial TiO(2) beads in terms of interference from non-phosphopeptide molecules. These results reveal that the lanthanum silicate coated magnetic microspheres represent a promising affinity material for the rapid purification and recognition of phosphopeptides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducible Automated Phosphopeptide Enrichment Using Magnetic TiO2 and Ti-IMAC

Reproducible, comprehensive phosphopeptide enrichment is essential for studying phosphorylation-regulated processes. Here, we describe the application of hyper-porous magnetic TiO2 and Ti-IMAC microspheres for uniform automated phosphopeptide enrichment. Combining magnetic microspheres with a magnetic particle-handling robot enables rapid (45 min), reproducible (r2 ≥ 0.80) and high-fidelity (>9...

متن کامل

Preparation of Ethylcellulose Coated Gelatin Microspheres as a Multiparticulate Colonic Delivery System for 5-Aminosalicilic Acid

In the long-term management of ulcerative colitis patients, repeat dosing maybe required. Since 5-ASA is largely absorbed from the upper intestine, selective delivery of drugs into the colon may be regarded as a better method of drug delivery with fewer side effects and a higher efficacy. The aim of this study was to prepare and evaluate a double coated multiparticulate system for 5-ASA deliver...

متن کامل

Facile synthesis of guanidyl-functionalized magnetic polymer microspheres for tunable and specific capture of global phosphopeptides or only multiphosphopeptides.

The highly selective and efficient capture of heterogeneous types of phosphopeptides is critical for comprehensive and in-depth phosphoproteome analysis, but it still remains a challenge since the lack of affinity material with large binding capacity and controllable specificity. Here, a new affinity material was prepared to improve the enrichment capacity and endue the tunable specificity by i...

متن کامل

Preparation of Ethylcellulose Coated Gelatin Microspheres as a Multiparticulate Colonic Delivery System for 5-Aminosalicilic Acid

In the long-term management of ulcerative colitis patients, repeat dosing maybe required. Since 5-ASA is largely absorbed from the upper intestine, selective delivery of drugs into the colon may be regarded as a better method of drug delivery with fewer side effects and a higher efficacy. The aim of this study was to prepare and evaluate a double coated multiparticulate system for 5-ASA deliver...

متن کامل

Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis.

Phospho-proteomics relies on methods for efficient purification and sequencing of phosphopeptides from highly complex biological systems using low amounts of starting material. Current methods for phosphopeptide enrichment, e.g., immobilized metal affinity chromatography and titanium dioxide chromatography, provide varying degrees of selectivity and specificity for phosphopeptide enrichment. Fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical and bioanalytical chemistry

دوره 404 3  شماره 

صفحات  -

تاریخ انتشار 2012