Biclustering Models for Two-Mode Ordinal Data
نویسندگان
چکیده
The work in this paper introduces finite mixture models that can be used to simultaneously cluster the rows and columns of two-mode ordinal categorical response data, such as those resulting from Likert scale responses. We use the popular proportional odds parameterisation and propose models which provide insights into major patterns in the data. Model-fitting is performed using the EM algorithm, and a fuzzy allocation of rows and columns to corresponding clusters is obtained. The clustering ability of the models is evaluated in a simulation study and demonstrated using two real data sets.
منابع مشابه
Biclustering: Methods, Software and Application
Over the past 10 years, biclustering has become popular not only in the field of biological data analysis but also in other applications with high-dimensional two way datasets. This technique clusters both rows and columns simultaneously, as opposed to clustering only rows or only columns. Biclustering retrieves subgroups of objects that are similar in one subgroup of variables and different in...
متن کاملبه کارگیری مدلهای رگرسیون لجستیک ترتیبی در مطالعات کیفیت زندگی
Background & Objectives: Due to the increasing tendency to measure the quality of life in recent years and the extensive quality of life questionnaires, it is important to determine the appropriate method of analyzing data derived from these studies. The aim of the present study was to introduce ordinal logistic regression models as an appropriate method for analyzing the data of quality of li...
متن کاملTransition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses
In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...
متن کاملComparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملRanking DMUs by ideal points in the presence of fuzzy and ordinal data
Envelopment Analysis (DEA) is a very eective method to evaluate the relative eciency of decision-making units (DMUs). DEA models divided all DMUs in two categories: ecient and inecientDMUs, and don't able to discriminant between ecient DMUs. On the other hand, the observedvalues of the input and output data in real-life problems are sometimes imprecise or vague, suchas interval data, ordinal da...
متن کامل