Backbone colorings along perfect matchings
نویسندگان
چکیده
Given a graph G = (V, E) and a spanning subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex coloring V → {1, 2, . . .} of G in which the colors assigned to adjacent vertices in H differ by at least two. In a recent paper, backbone colorings were introduced and studied in cases were the backbone is either a spanning tree or a spanning path. Here we study the case where the backbone is a perfect matching. We show that for perfect matching backbones of G the number of colors needed for a backbone coloring of G can roughly differ by a multiplicative factor of at most 4 3 from the chromatic number χ(G). We show that the computational complexity of the problem “Given a graph G with a perfect matching M , and an integer `, is there a backbone coloring for G and M with at most ` colors?” jumps from polynomial to NP-complete between ` = 3 and ` = 4. Finally, we consider the case where G is a planar graph.
منابع مشابه
Complete forcing numbers of polyphenyl systems
The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...
متن کاملBackbone colorings along stars and matchings in split graphs: their span is close to the chromatic number
We continue the study on backbone colorings, a variation on classical vertex colorings that was introduced at WG2003. Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring for G and H is a proper vertex coloring V → {1, 2, . . .} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The algorithmic and combinatorial propert...
متن کاملλ-Backbone Colorings Along Pairwise Disjoint Stars and Matchings
Given an integer λ ≥ 2, a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring of (G,H) is a proper vertex coloring V → {1, 2, . . .} of G, in which the colors assigned to adjacent vertices in H differ by at least λ. We study the case where the backbone is either a collection of pairwise disjoint stars or a matching. We show that for a star backbone S of G t...
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملPerfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کامل