Inverse Spectral Problems for Schrödinger-type Operators with Distributional Matrix-valued Potentials

نویسندگان

  • JONATHAN ECKHARDT
  • FRITZ GESZTESY
  • ROGER NICHOLS
  • ALEXANDER SAKHNOVICH
  • GERALD TESCHL
چکیده

The principal purpose of this note is to provide a reconstruction procedure for distributional matrix-valued potential coefficients of Schrödingertype operators on a half-line from the underlying Weyl–Titchmarsh function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supersymmetry and Schrödinger-type operators with distributional matrix-valued potentials

Building on work on Miura’s transformation by Kappeler, Perry, Shubin, and Topalov, we develop a detailed spectral theoretic treatment of Schrödinger operators with matrix-valued potentials, with special emphasis on distributional potential coefficients. Our principal method relies on a supersymmetric (factorization) formalism underlying Miura’s transformation, which intimately connects the tri...

متن کامل

A Class of Matrix-valued Schrödinger Operators with Prescribed Finite-band Spectra

We construct a class of matrix-valued Schrödinger operators with prescribed finite-band spectra of maximum spectral multiplicity. The corresponding matrix potentials are shown to be stationary solutions of the KdV hierarchy. The methods employed in this paper rely on matrix-valued Herglotz functions, Weyl–Titchmarsh theory, pencils of matrices, and basic inverse spectral theory for matrix-value...

متن کامل

Inverse spectral theory for Sturm-Liouville operators with distributional potentials

We discuss inverse spectral theory for singular differential operators on arbitrary intervals (a, b) ⊆ R associated with rather general differential expressions of the type τf = 1 r ( − ( p[f ′ + sf ] )′ + sp[f ′ + sf ] + qf ) , where the coefficients p, q, r, s are Lebesgue measurable on (a, b) with p−1, q, r, s ∈ Lloc((a, b); dx) and real-valued with p 6= 0 and r > 0 almost everywhere on (a, ...

متن کامل

Inverse Spectral Problems for Sturm-liouville Operators with Singular Potentials, Iv. Potentials in the Sobolev Space Scale

We solve the inverse spectral problems for the class of Sturm–Liouville operators with singular real-valued potentials from the Sobolev space W s−1 2 (0, 1), s ∈ [0, 1]. The potential is recovered from two spectra or from the spectrum and norming constants. Necessary and sufficient conditions on the spectral data to correspond to the potential in W s−1 2 (0, 1) are established.

متن کامل

Inverse uniqueness results for Schrödinger operators using de Branges theory

We utilize the theory of de Branges spaces to show when certain Schrödinger operators with strongly singular potentials are uniquely determined by their associated spectral measure. The results are applied to obtain an inverse uniqueness theorem for perturbed spherical Schrödinger operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015