Subalgebras of the Stanley - Reisner Ring
نویسنده
چکیده
In [2], Billera proved that the R-algebra of continuous piecewise polynomial functions (C0 splines) on a d-dimensional simplicial complex 1 embedded in Rd is a quotient of the Stanley–Reisner ring A1 of 1. We derive a criterion to determine which elements of the Stanley–Reisner ring correspond to splines of higher-order smoothness. In [5], Lau and Stiller point out that the dimension of C k (1) is upper semicontinuous in the Zariski topology. Using the criterion, we give an algorithm for obtaining the defining equations of the set of vertex locations where the dimension jumps.
منابع مشابه
On a special class of Stanley-Reisner ideals
For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...
متن کاملAddendum to ”frobenius and Cartier Algebras of Stanley-reisner
We give a purely combinatorial characterization of complete Stanley-Reisner rings having a principally generated (equivalently, finitely generated) Cartier algebra.
متن کاملStanley–reisner Rings with Large Multiplicities Are Cohen–macaulay
We prove that certain class of Stanley–Reisner rings having sufficiently large multiplicities are Cohen–Macaulay using Alexander duality.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 21 شماره
صفحات -
تاریخ انتشار 1999