Preconditioners for pseudodifferential equations on the sphere with radial basis functions

نویسندگان

  • Thanh Tran
  • Quoc Thong Le Gia
  • Ian H. Sloan
  • Ernst P. Stephan
چکیده

In a previous paper a preconditioning strategy based on overlapping domain decomposition was applied to the Galerkin approximation of elliptic partial differential equations on the sphere. In this paper the methods are extended to more general pseudodifferential equations on the sphere, using as before spherical radial basis functions for the approximation space, and again preconditioning the ill-conditioned linear systems of the Galerkin approximation by the additive Schwarz method. Numerical results are presented for the case of hypersingular and weakly singular integral operators on the sphere S2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly elliptic pseudodifferential equations on the sphere with radial basis functions

Spherical radial basis functions are used to define approximate solutions to strongly elliptic pseudodifferential equations on the unit sphere. These equations arise from geodesy. The approximate solutions are found by the Galerkin and collocation methods. A salient feature of the paper is a unified theory for error analysis of both approximation methods.

متن کامل

Pseudodifferential equations on the sphere with radial basis functions: Error analysis

Spherical radial basis functions are used to define approximate solutions to strongly elliptic and elliptic pseudodifferential equations on the unit sphere. These equations arise from geodesy. The approximate solutions are found by the Galerkin and collocation methods. A salient feature of the paper is a unified theory for error analysis of both approximation methods.

متن کامل

Collocation Solutions to Pseudodifferential Equations of Negative Orders on the Sphere Using Spherical Radial Basis Functions

Abstract. Spherical radial basis functions are used to define approximate solutions to pseudodifferential equations of negative orders on the unit sphere. These equations arise from geodesy. The approximate solutions are found by the collocation method. A salient feature of our approach in this paper is a simple error analysis for the collocation method using the same argument as that for the G...

متن کامل

A meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions

In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...

متن کامل

The use of radial basis functions by variable shape parameter for solving partial differential equations

In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2010