A Heuristic Reputation Based System to Detect Spam activities in a Social Networking Platform, HRSSSNP

نویسندگان

  • Manoj Rameshchandra Thakur
  • Sugata Sanyal
چکیده

The introduction of the social networking platform has drastically affected the way individuals interact. Even though most of the effects have been positive, there exist some serious threats associated with the interactions on a social networking website. A considerable proportion of the crimes that occur are initiated through a social networking platform [5]. Almost 33% of the crimes on the internet are initiated through a social networking website [5]. Moreover activities like spam messages create unnecessary traffic and might affect the user base of a social networking platform. As a result preventing interactions with malicious intent and spam activities becomes crucial. This work attempts to detect the same in a social networking platform by considering a social network as a weighted graph wherein each node, which represents an individual in the social network, stores activities of other nodes with respect to itself in an optimized format which is referred to as localized data-set. The weights associated with the edges in the graph represent the trust relationship between profiles. The weights of the edges along with the localized data-set is used to infer whether nodes in the social network are compromised and are performing spam or malicious activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Spam on Social Networking Sites: Related Work

1. RELATED WORK The rise of social media has made Social Networking Services (SNSs) more attractive targets for spam and fraud, leading to increasingly sophisticated attacks. This trend is reflected in recent research, as papers have focused on identifying and classifying the various types of social media spam. Many of these studies employ techniques previously used to combat conventional email...

متن کامل

BotRevealer: Behavioral Detection of Botnets based on Botnet Life-cycle

Nowadays, botnets are considered as essential tools for planning serious cyberattacks. Botnets are used to perform various malicious activities such as DDoSattacks and sending spam emails. Different approaches are presented to detectbotnets; however most of them may be ineffective when there are only a fewinfected hosts in monitored network, as they rely on similarity in...

متن کامل

Automated Detection of Spammers’ Profiles using Improved K-Means in Twitter

In the digital world of applications, a new application called twitter made a major impact in online social networking and micro blogging. The communication between users is through text based post. Its popularity also attracts many spammers to infiltrate legitimate users account with large amount of spam messages .Online social networking platforms are providing us with a large scale platform ...

متن کامل

A collusion mitigation scheme for reputation systems

Reputation management systems are in wide-spread use to regulate collaborations in cooperative systems. Collusion is one of the most destructive malicious behaviors in which colluders seek to affect a reputation management system in an unfair manner. Many reputation systems are vulnerable to collusion, and some model-specific mitigation methods are proposed to combat collusion. Detection of col...

متن کامل

Spam Filtering Methods and machine Learning Algorithm - A Survey

Social networking websites are used by millions of people around the world. People express their views, opinions and share current topics. Millions of data generated every day. It’s a good platform to connect with the people. Now a day’s spammers used this platform to advertise spam content on the social networking websites. The proposed system used to classify tweets into different groups as s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1212.1914  شماره 

صفحات  -

تاریخ انتشار 2012