An Extended Michigan-Style Learning Classifier System for Flexible Supervised Learning, Classification, and Data Mining
نویسندگان
چکیده
Advancements in learning classifier system (LCS) algorithms have highlighted their unique potential for tackling complex, noisy problems, as found in bioinformatics. Ongoing research in this domain must address the challenges of modeling complex patterns of association, systems biology (i.e. the integration of different data types to achieve a more holistic perspective), and ‘big data’ (i.e. scalability in large-scale analysis). With this in mind, we introduce ExSTraCS (Extended Supervised Tracking and Classifying System), as a promising platform to address these challenges using supervised learning and a Michigan-Style LCS architecture. ExSTraCS integrates several successful LCS advancements including attribute tracking/feedback, expert knowledge covering (with four built-in attribute weighting algorithms), a flexible and efficient rule representation (handling datasets with both discrete and continuous attributes), and rapid non-destructive rule compaction. A few novel mechanisms, such as adaptive data management, have been included to enhance ease of use, flexibility, performance, and provide groundwork for ongoing development.
منابع مشابه
Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملInducing Generalized Multi-Label Rules with Learning Classifier Systems
In recent years, multi-label classification has attracted a significant body of research, motivated by real-life applications, such as text classification and medical diagnoses. Although sparsely studied in this context, Learning Classifier Systems are naturally well-suited to multi-label classification problems, whose search space typically involves multiple highly specific niches. This is the...
متن کاملAccuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks
Recently, Learning Classifier Systems (LCS) and particularly XCS have arisen as promising methods for classification tasks and data mining. This paper investigates two models of accuracy-based learning classifier systems on different types of classification problems. Departing from XCS, we analyze the evolution of a complete action map as a knowledge representation. We propose an alternative, U...
متن کاملVerification of unemployment benefits’ claims using Classifier Combination method
Unemployment insurance is one of the most popular insurance types in the modern world. The Social Security Organization is responsible for checking the unemployment benefits of individuals supported by unemployment insurance. Hand-crafted evaluation of unemployment claims requires a big deal of time and money. Data mining and machine learning as two efficient tools for data analysis can assist ...
متن کاملUsing Expert Knowledge to Guide Covering and Mutation in a Michigan Style Learning Classifier System to Detect Epistasis and Heterogeneity
Learning Classifier Systems (LCSs) are a unique brand of multifaceted evolutionary algorithms well suited to complex or heterogeneous problem domains. One such domain involves data mining within genetic association studies which investigate human disease. Previously we have demonstrated the ability of Michigan-style LCSs to detect genetic associations in the presence of two complicating phenome...
متن کامل