RADIOACTIVE WASTE MANAGEMENT ANALYSIS / MODEL REVISION RECORD Complete
نویسندگان
چکیده
ion of Models of Stress Corrosion Cracking of Drip Shield and Waste Package Outer Barrier and Hydrogen Induced Corrosion of Drip Shield TABLE OF CONTENTS Page 1. PU R P O SE ............................................................................................................................... 8 2. QUALITY ASSURANCE .............................................. 8 3. COMPUTER SOFTWARE AND MODEL USAGE ....................................................... 9 3.1 COM PUTER SOFTW ARE ...................................................................................... 9 3.1.1 Mathcad 2000 Professional ................................... 9 3.2 M O D ELS U SED ....................................................................................................... 9 3.2.1 Stress Corrosion Cracking of the Drip Shield and the Waste Package Outer Barrier Process Model ....................................................... 9 4. IN PUT S ................................................................................................................................. 10 4.1 DATA AND PARAMETERS ................................................................................. 10 4.2 C R IT E R IA .................................................................................................................. 14 4.2.1 Acceptance Criteria Applicable To All Six Sub-Issues ............... 14 4.2.2 Acceptance Criteria For Sub-Issue 1 ......................................................... 15 4.2.3 Acceptance Criteria for Sub-Issue 2 ......................................................... 16 4.3 CODES AND STANDARDS ...................................... 17 5. ASSUMPTIONS .................................................... 17 5.1 TITANIUM GRADE 7 DRIP SHIELD STRESS CORROSION AND HYDROGEN INDUCED CRACKING ................................................................. 17 5.2 MANUFACTURING DEFECTS IN CLOSURE LID WELDS ............................. 18 5.3 STRESS AND STRESS INTENSITY FACTOR PROFILES IN CLOSURE LID WELDS ........ : ................................. 20 5.4 SLIP DISSOLUTION MODEL .............................................................................. 21 5.5 THRESHOLD STRESS INTENSITY FACTOR (Kiscc) MODEL ....................... 22 .6. A N A LY SIS/M O D EL .... . ....... ............................................. ............................................. 22 6.1 STRESS CORROSION CRACKING AND HYDROGEN INDUCED CRACKING OF DRIP SHIELD ........................... ; ................................................ 23 6.2 MANUFACTURING DEFECTS ABSTRACTION MODEL .............................. 24 6.2.1 Abstraction M ethodology ......................................................................... 24 6.2.2 Implementation of Closure Lid Weld Defect Flaw Abstraction Results in Waste Package Degradation Analysis .......................................... 29 6.2.3 Manufacturing Defect Abstraction Model Validation ............................... 30 6.3 STRESS AND STRESS INTENSITY FACTOR PROFILE ABSTRACTION M ODEL ..................................................................................... 30 6.3.1 Abstraction M ethodology ......................................................................... 30 6.3.2 Stress and Stress Intensity Factor Profile Abstraction Model V alidation ................................................................................................... 40 6.4 SLIP DISSOLUTION ABSTRACTION MODEL ................................................. 41 6.4.1 Abstraction Approach and Methodology ................................................. 41 6.4.2 Crack Growth Rate .................................................................................. 42 ANL-EBS-PA-000004 REV 00 ICN 01 November 2000 1 3 Abstraction of Models of Stress Corrosion Cracking of Drip Shield and Waste Package Outer Barrier and Hydrogen Induced Corrosion of Drip Shield 6.4.3 Threshold Stress for Crack Growth Initiation ............................................ 43 6.4.4 Incipient Cracks and Manufacturing Defects ........................................... 43 6.4.5 Slip Dissolution Model Analysis .............................................................. 44 6.4.6 Slip Dissolution Abstraction Model Validation ........................................ 45 6.5 THRESHOLD STRESS INTENSITY FACTOR ABSTRACTION M O D E L ....................................................................................................................... 45 6.5.1 Threshold Stress Intensity Factor Abstraction Model Validation ............. 46 7. C O N CLU SIO N S .................................................................................................................. 47 8. INPUTS AND REFERENCES ......................................................................................... 50 8.1 DOCUM ENT CITED .............................................................................................. 50 8.2 CODES, STANDARDS, REGULATIONS, AND PROCEDURES ..................... 51 8.3 SOURCE DATA, LISTED BY DATA TRACKING NUMBER .......................... 52ion of Models of Stress Corrosion Cracking of Drip Shield and Waste Package Outer Barrier and Hydrogen Induced Corrosion of Drip Shield 6.4.3 Threshold Stress for Crack Growth Initiation ............................................ 43 6.4.4 Incipient Cracks and Manufacturing Defects ........................................... 43 6.4.5 Slip Dissolution Model Analysis .............................................................. 44 6.4.6 Slip Dissolution Abstraction Model Validation ........................................ 45 6.5 THRESHOLD STRESS INTENSITY FACTOR ABSTRACTION M O D E L ....................................................................................................................... 45 6.5.1 Threshold Stress Intensity Factor Abstraction Model Validation ............. 46 7. C O N CLU SIO N S .................................................................................................................. 47 8. INPUTS AND REFERENCES ......................................................................................... 50 8.1 DOCUM ENT CITED .............................................................................................. 50 8.2 CODES, STANDARDS, REGULATIONS, AND PROCEDURES ..................... 51 8.3 SOURCE DATA, LISTED BY DATA TRACKING NUMBER .......................... 52 9. A TT A CH M ENT S ................................................................................................................. 52 ANL-EBS-PA-000004 REV 00 ICN 01 November 2000 1 4 Abstraction of Models of Stress Corrosion Cracking of Drip Shield and Waste Package Outer Barrier and Hydrogen Induced Corrosion of Drip Shieldion of Models of Stress Corrosion Cracking of Drip Shield and Waste Package Outer Barrier and Hydrogen Induced Corrosion of Drip Shield LIST OF FIGURES Page Figure 1. The probability flaws are not detected as a function of b and v (25-mm extended closure lid weld) (Source: CRWMS M&O 2000c, Figure 1; DTN: M O0001SPASUP03.001) ............................................................................ 26 Figure 2. Conditional probability density functions of defect flaw sizes in the closure lid welds for various combinations of values for parameters, b and v (Source: CRWMS M&O 2000c, Figure 2; DTN: M 00001SPASUP03.001 ) ...................................................................................... 27 Figure 3. Hoop stress as a function of depth in the extended closure lid welds (25 mm thick) at the reference location on the extended closure lid weld circumference and the uncertainty range ................................................................. 33 Figure 4. Stress intensity factor as a function of radial crack depth in the extended closure lid welds (25-mm thick) at the reference location on the extended closure lid weld circumference and the uncertainty range ...................... 34 Figure 5. Hoop stress as a function of depth in the extended closure lid welds (25 mm thick) at 0', 90' and 1800 angles along the circumference of the extended closure lid weld ....................................................................................... 34 Figure 6. Stress intensity factor as a function of radial crack depth in the extended closure lid welds (25-mm thick) at 00, 90' and 1800 angles along the extended closure lid weld circumference .............................................................. 35 Figure 7. Hoop stress as a function of the projected depth in the flat closure lid welds (10-mm thick) at the reference location on the flat closure lid weld circumference and the uncertainty range ........................................................ 35 Figure 8. Stress intensity factor as a function of the projected radial crack depth in the flat closure lid welds (10-mm thick) at the reference location on the flat closure lid weld circumference and the uncertainty range ............................... 36 Figure 9. Hoop stress as a function of the projected depth in the flat closure lid welds (10-mm thick) at 00, 900 and 1800 angles along the circumference of the flat closure lid weld ....................................................................................... 36 Figure 10. Stress intensity factor as a function of the projected radial crack depth in the flat closure lid welds (10-mm thick) at 00, 900 and 180' angles along the flat closure lid weld circumference ................................................................... 37 Figure 11. Hoop stress as a function of depth in the Alloy 22 extended closure lid welds (25-mm thick) at the reference location on the extended lid weld circumference using uncertainty bounds of ± 5, 10, and 30% ................................ 38 ANL-EBS-PA-000004 REV 00 ICN 01 November 2000 1 5 Abstraction of Models of Stress Corrosion Cracking of Drip Shield and Waste Package Outer Barrier and Hydrogen Induced Corrosion of Drip Shieldion of Models of Stress Corrosion Cracking of Drip Shield and Waste Package Outer Barrier and Hydrogen Induced Corrosion of Drip Shield Figure 12. Stress intensity factor as a function of radial crack depth in the Alloy 22 extended closure lid welds (25-mm thick) at the reference location on the extended closure lid weld circumference using uncertainty bounds of ± 5, 10, and 30% .......................................................................................................... 39 Figure 13. Hoop stress as a function of radial crack depth. in the Alloy 22 flat closure lid welds (10-mm thick) at the reference location on the flat closure lid weld circumference using uncertainty bounds of ± 5, 10, and 30% .............................................................................................................................. 39 Figure 14. Stress intensity factor as a function of depth in the Alloy 22 flat closure lid welds (10-mm thick) at the reference location on the flat closure lid weld circumference using uncertainty bounds of ± 5, 10, and 30% ...................... 40 Figure 15. Bounding calculations for the model responses for the time to failure of the extended and flat closure lids by SCC calculated with the slip dissolution model using the bounding values for parameter n for a range of the stress intensity factor values ......................................................................... 44 Figure 16. Probability density function of the threshold stress intensity factor of the waste package outer barrier closure lids (Alloy 22) ............................................... 46 ANL-EBS-PA-000004 REV 00 ICN 01 November 2000 1 6 Abstraction of Models of Stress Corrosion Cracking of Drip Shield and Waste Package Outer Barrier and Hydrogen Induced Corrosion of Drip Shieldion of Models of Stress Corrosion Cracking of Drip Shield and Waste Package Outer Barrier and Hydrogen Induced Corrosion of Drip Shield
منابع مشابه
RADIOACTIVE WASTE MANAGEMENT IN REP. OF KOREA 1. NATIONAL FRAMEWORK FOR THE MANAGEMENT AND REGULATION OF RADIOACTIVE WASTE AND DECOMMISSIONING 1.1 National framework
The Korean government has strived to secure a disposal site for the safe management of radioactive waste since the early 1980s. The 249 th meeting of the Atomic Energy Commission (AEC) held in September 1998 established the “National Radioactive Waste Management Policy”, which aims at completing the construction of a Low and Intermediate Level Radioactive Waste (LILW) disposal facility by 2008,...
متن کاملAnnex B
In 1973, the Japan Atomic Energy Industry Forum published a report entitled “A closed system for radioactivity”. The report pointed out the importance of R&D for P&T of long-lived nuclides as long-term efforts in developing a complete system for radioactive waste management. JAERI started the development of partitioning process for high-level liquid waste and the design study of transmutation s...
متن کاملRadioactive Waste Management in Rep. of Korea 1. National Framework for Management and Regulation of Radioactive Waste and Decommissioning
1. NATIONAL FRAMEWORK FOR MANAGEMENT AND REGULATION OF RADIOACTIVE WASTE AND DECOMMISSIONING 1.1 National framework 1.1.1 Overview of national policy The Atomic Energy Commission (AEC) of the Korean government developed the “National Radioactive Waste Management Policy” at the 249 th meeting held on September 30, 1998. The policy stipulates that the site selection process for radioactive waste ...
متن کاملCharacteristics and behaviour of 14C and 36Cl in the biosphere in the context of radioactive waste management
Evaluation of the safety of high-level radioactive waste repositories is a requisite included in radioactive waste management policy. Criteria for the safety of those facilities require protection of the population and the environment over a time scale appropriate to the characteristics of the radionuclides present in the disposed wastes. In order to demonstrate compliance with regulations, a q...
متن کاملThe State of Development of Waste Forms for Mixed Wastes
More than 167,000 m of mixed waste, waste that contains both chemically hazardous and radioactive components, are in the known inventory at DOE sites that formarly produced nuclear defense materials. The inventory contains both mixed low level wastes (MLLW) and mixed transuranic wastes (MTRU). Site cleanup and decommissioning activities during the coming years are expected to nearly double this...
متن کامل